Feeds:
Posts
Comments

Posts Tagged ‘anatomy’

Greetings Freezerinos, and Happy New Year! I have been quiet on this blog for health and other reasons but those will pass and there will be new posts in 2016. However, behind the scenes there have been super-cool things afoot. I am very happy to bring one of them to you now:

(but first: Stomach-Churning Rating: 6/10; video below shows a dissected sea turtle foot in motion)

We have just debuted our new social media “presence” (for lack of a better word) that is a sister blog to this one. It is called Anatomy To You (http://anatomytoyou.com/), as its intent is to bring a wide array of science about animal anatomy to “you”, the general public. This John’s Freezer blog will continue with it’s style of rambling longer posts targeted at a fairly geeky scientifically literate audience and focusing on my team’s research and my own disparate thoughts about science and related issues. Anatomy To You will bring you shorter posts, even just images, completely focused on celebrating the structure of organisms, and not just presenting my team’s research but also a wide array of anatomical science from around the globe. It will also be much more regular and frequent in its posts. We’ll welcome guest posts and I encourage you to get in touch with us if you want to jump on the bandwagon early, or have us feature your research for you!

More about the ATY blog is here, but there is also a Twitter feed and Facebook account. Our first major posts are on what skeletons are, and on a dissection of some sea turtles. Please follow us and join in the celebration of anatomy! My team’s scientific communicator/technician Dr. Lauren Sumner-Rooney is spearheading this ATY effort with me, so please follow her too!

Anatomy To You will continue to evolve over this coming year, so please stay with us and give us feedback; join in the morphological conversations with us. I am SUPER excited to see where this goes– it is an experiment that has a lot of potential, we think.

Sea turtle from our ATY dissection, foot muscles in action (found dead in the wild; don’t be ridiculous, we don’t kill sea turtles for our research)

Read Full Post »

Seeking adaptations for running and swimming in the vertebral columns of ancient crocs

A guest post by Dr. Julia Molnar, Howard University, USA (this comes from Julia’s PhD research at RVC with John & colleagues)

Recently, John and I with colleagues Stephanie Pierce, Bhart-Anjan Bhullar, and Alan Turner described morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs (Royal Society Open Science, doi 10.1098/rsos.150439). Our results shed light upon key aspects of the evolutionary history of these under-appreciated archosaurs.

Stomach-Churning Rating: 5/10; a juicy croc torso in one small photo but that’s all.

Phylogenetic relationships of the three crocodylomorph groups in the study and our functional hypotheses about their vertebrae. * Image credits: Hesperosuchus by Smokeybjb, Suchodus by Dmitry Bogdanov (vectorized by T. Michael Keesey) http://creativecommons.org/licenses/by-sa/3.0

Phylogenetic relationships of the three crocodylomorph groups in the study and our functional hypotheses about their vertebrae. * Image credits: Hesperosuchus by Smokeybjb, Suchodus by Dmitry Bogdanov (vectorized by T. Michael Keesey) http://creativecommons.org/licenses/by-sa/3.0

As fascinating as modern crocodiles might be, in many ways they are overshadowed by their extinct, Mesozoic cousins and ancestors. The Triassic, Jurassic, and early Cretaceous periods saw the small, fast, hyper-carnivorous “sphenosuchians,” the giant, flippered marine thalattosuchians, and various oddballs like the duck-billed Anatosuchus and the aptly named Armadillosuchus. As palaeontologists/biomechanists, we looked at this wide variety of ecological specializations in those species, the Crocodylomorpha, and wanted to know, how did they do it?

Of course, we weren’t the first scientists to wonder about the locomotion of crocodylomorphs, but we did have some new tools in our toolbox; specifically, a couple of micro-CT scanners and some sophisticated imaging software. We took CT and micro-CT scans of five fossil crocodylomorphs: two presumably terrestrial early crocodylomorphs (Terrestrisuchus and Protosuchus), three aquatic thalattosuchians (Pelagosaurus, Steneosaurus, and Metriorhynchus) and a semi-aquatic modern crocodile (Crocodylus niloticus). Since we’re still stuck on vertebrae (see, e.g., here; and also here), we digitally separated out the vertebrae to make 3D models of individual joints and took measurements from each vertebra. Finally, we manipulated the virtual joint models to find out how far they could move before the bones bumped into each other or the joints came apart (osteological range of motion, or RoM).

 

Our methods: get fossil, scan fossil, make virtual fossil and play with it.

Our methods: get fossil (NHMUK), scan fossil, make virtual fossil and play with it.

Above: Video of a single virtual inter-vertebral joint from the trunk of Pelagosaurus typus (NHMUK) showing maximum osteological range of motion in the lateral direction (video). Note the very un-modern-croc-like flat surfaces of the vertebral bodies! (modern crocs have a ball-and-socket spinal joint with the socket on the front end)

While this was a lot of fun, what we really wanted to find out was whether, as crocodylomorphs became specialized for different types of locomotion, the shapes of their vertebrae changed similarly to those of mammalian lineages. For example, many terrestrial mammals have a lumbar region that is very flexible dorsoventrally to allow up-and-down movements during bounding and galloping. Did fast-running crocodylomorphs have similar dorsoventral flexibility? And did fast-swimming aquatic crocodylomorphs evolve a stiffer vertebral column like that of whales and dolphins?

Above: Video of how we modelled and took measurements from the early crocodylomorph Terrestrisuchus gracilis (NHMUK).

Our first results were puzzling. The Nile croc had greater RoM in side-to-side motions, which makes sense because crocodiles mostly use more sprawling postures and are semi-aquatic, using quite a bit of side-to-side motions in life. The part that didn’t make sense was that we found pretty much the same thing in all of the fossil crocodylomorphs, including the presumably very terrestrial Terrestrisuchus and Protosuchus. With their long limbs and hinge-like joints, these two are unlikely to have been sprawlers or swimmers!

So we started looking for other parts of the croc that might affect RoM. The obvious candidate was osteoderms, the bony scales that cover the back. We went back to John’s Freezer and got out a nice frozen crocodile to measure the stiffness of its trunk and found that, sure enough, it was a lot stiffer and less mobile without the osteoderms. If the fairly flexible arrangement of osteoderms in crocodiles had this effect on stiffness, it seemed likely that (as previous authors have suggested; Eberhard Frey and Steve Salisbury being foremost amongst them) the rigid, interlocking osteoderms running from head to tail in early crocodylomorphs would really have put the brakes on their ability to move their trunk in certain ways.

Testing stiffness of crocodile trunks to learn the effects of osteoderms, skin, muscles, and ribs. We hung metric weights from the middle of the trunk and measured how much it flexed (Ɵ), then removed bits and repeated.

Testing the stiffness of (Nile) crocodile trunks to learn the effects of osteoderms, skin, muscles, and ribs. We hung metric weights from the middle of the trunk and measured how much it flexed (Ɵ), then removed bits and repeated. Click to em-croccen.

Another cool thing we found was new evidence of convergent evolution to aquatic lifestyles in the spines of thalattosuchians. The more basal thalattosuchians, thought to have been near-shore predators, had stiffness and RoM patterns similar to Crocodylus. But Metriorhynchus, which probably was very good at chasing down fast fish in the open ocean, seems to have had greater stiffness. (The stiffness estimates come from morphometrics and are based on modern crocodiles; see here again, or just read the paper already!) A stiff vertebral column can be useful for a swimmer because it increases the body’s natural frequency of oscillation, and faster oscillation means faster swimming (think tuna, not eel). The same thing seems to have happened in other secondarily aquatic vertebrate lineages such as whales, ichthyosaurs, and mosasaurs.

So, our results were a mixed bag of adaptations particular to crocs and ones that seem like general vertebrate swimming specializations. Crocodylomorphs are important because they are the only group of large vertebrates other than mammals that has secondarily aquatic members and has living members with a reasonably similar body plan, allowing us to test hypotheses in ways that would arguably be impossible for, say, non-avian dinosaurs and birds. The take-home message: crocodylomorphs A) are awesome, and B) can teach us a lot about how vertebrates adapt to different modes of life.

Another take on this story is on our lab website here.

Read Full Post »

I was recently featured on Daily Planet, a great Canadian science show on TV that lamentably is not broadcast more globally. It is always high quality science communication, aided by the superb hosts Ziya Tong and Dan Riskin (and a talented crew!). What were we doing? Dissecting an elephant’s foot, of course!

Stomach-Churning Rating: 9/10; no-holds-barred dismantling of elephant feet, from the video onwards, and this post is heavy on moist, goopy photos afterwards, with some nasty pathologies. Not nice at all. I’ll give you a chance to turn around while contemplating the cart that we use to carry elephant feet around campus (each foot is 20-30kg; up to 70lbs; so we need the help!), before the video.

no_poo

Here is a snippet of the full segment from Daily Planet:

And here is more of some of my recent dissections. I’ll walk you through two dissections, via photos. This goes back to the roots of this blog: unflinching, gritty examinations of real anatomy! Of course, no elephants were harmed for this work. They died at EU zoos/parks and were sent to me for postmortem examination and research, so we hope that this benefits the future care of elephants. We’re currently finishing up a grand overview paper that describes all of the odd pathologies we’ve observed in elephant feet, for the benefit of zoo keepers and vets who are trying to detect, diagnose and monitor any foot problems.

As the post’s title alludes, elephant feet (and more proximal parts of the limbs) are no stranger to this blog. If you’ve forgotten or are unfamiliar, here are some of my past proboscidean-posts: on elephant foot pathologies (a close sister post to this one), our “six-toed” elephants paper, how to make a computer simulation of an elephant’s limb (umm, paper yet to come!), how we boil and bleach bones to clean them up, and a few others. Last but not least, there was the post that went viral in the early #JohnsFreezer/WIJF days: dissecting an elephant with the “Inside Nature’s Giants” show.

There are two feet in this post, both front right feet (manus is the technical term; singular and plural). The first one is the messier (unhealthy and bloodier, less fresh and clean) one, from the show/video. It is an Asian elephant (Elephas maximus). I kick off with photos I took after the filming, so the foot is already deconstructed:

Skinned foot, oblique front/inside view.

Skinned foot, oblique front/inside view. The wrist is on the right side of the photo; the toes on the left.

Sole ("slipper"), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out.

Sole (“slipper”), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out. The slipper here is upside-down.

Top-down view of the sole of the foot, once the slipper is removed.

Top-down view of the sole of the foot, once the slipper is removed; flipped over and rotated 90 degrees clockwise from the above photo. Some of the fat pad of the foot is on the right side of the image; it’s very hard to separate from the keratinous sole of the foot.

Looking down into the fourth toe's abscess on the other side of the above view.

Looking down into the fourth toe’s (ring finger) abscess on the other side of the above view.

Looking down into the third (middle) toe, same view as above. Some redness and greyness where this toe had some of its own pathological issues.

Looking down into the second toe (index finger), same view as above. Some redness and greyness where this toe had some of its own pathological issues like infection and a smaller abscess.

Looking up from the slipper at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot).

Looking up from the slipper (removed) at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot). The very bad infection on the fourth toe is visible on the bottom right.

The sproingy fat pad is worth a video!

And one good wiggle deserves another!

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the "hand" are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant's foot.

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the “hand” are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant’s foot. As you will see in my dissection of the second foot, further below!

Looking down onto the medial (inner/"thumb") border of the foot, where I've exposed the prepollex, or false "sixth finger" by removing the first metacarpal (knuckle) bone.

Looking down onto the medial (inner/”thumb”) border of the foot, where I’ve exposed the prepollex, or false “sixth finger”, by removing the first metacarpal (knuckle) bone.

Removed the prepollex from the foot. The white oval structure is the top of the prepollex; white is cartilage, whereas the red "islands" are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone.

I’ve removed the prepollex from the foot. The white oval structure (bottom right) is the top of the conical prepollex, where it connected to the rest of the foot. White is cartilage, whereas the red “islands” are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone. The fleshy pink tissue adhering to the surface of the prepollex here is a remnant of “abductor” muscle that connects it to the thumb and thus could allow some active control of the prepollex’s mobility.

Well, that was one very pathological elephant’s foot; one of the worst I have ever seen. Every foot I dissect is different and tells me a unique story about that animal’s development, history and health. This one told a very sad tale. What does a somewhat normal elephant’s foot look like? I thawed one out for comparison, and to thin out my overstuffed freezer stock. This one starts off from an intact (if severed) foot so you can witness the stages of dissection:

Whole foot. African elephant (Loxodonta africana).

Whole foot. African elephant (Loxodonta africana). You may spot in later photos that the second and fourth toes’ nails are cracked longitudinally. This happens sometimes in elephants without any obvious health problems such as infection, but if it lasts long enough and conditions are bad enough (e.g. unsanitary conditions getting bacteria into the crack; spreading the crack to let them into the foot tissue), it could worsen.

Nice clean sole.

Nice clean sole. No abscesses or other problems. You can faintly see the cracked toenails here.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Removing the skin; nice soft whitish connective tissue underneath.

Removing the skin; nice soft whitish connective tissue underneath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot's surface, running to the toes.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot’s surface, running to the toes.

Ahh, my favourite thing! I've cut around the prepollex and am pointing at it. It's almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Ahh, my favourite thing! I’ve cut around the prepollex and am pointing at it. It’s almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Removing the prepollex. It's tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

Removing the prepollex. It’s tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These "sesamoid bones" vary tremendously in elephants I've inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These “sesamoid bones” vary tremendously in elephants I’ve inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That's what elephants have.

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That’s what elephants have.

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Skinned foot, oblique front/inside view again, as above.

Skinned foot, oblique front/inside view again, as above.

Fat pad removed, looking up through where it was at the palm of the "hands", where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the "thumb" (first toe) is on the upper left.

Fat pad removed, looking up through where it was at the palm of the “hands”, where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the “thumb” (first toe) is on the upper left.

Elephant's-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life.

Elephant’s-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life (i.e. the limb would be coming down vertically, perpendicular to the plane of the image). The fat pad of the foot is visibly thicker toward the back of the foot (bottom of the image), as you’d expect, because the toes occupy most of the front parts.

Palmar tendons and muscles; the common digital extensor muscle group. Clenches the toes. Not a small muscle, either!

Palmar tendons and muscles; the common digital extensor muscle group, which clenches the toes. Not a small muscle, either!

Tendons of the digital flexor muscle exposed.

Tendons of the digital flexor muscle exposed.

Removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

I removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we've done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we’ve done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Let’s finish off with some osteology, shall we? First the unhealthy Asian elephant, then the healthy African elephant; same front right feet, just the bones (from my CT scans):

Ouch, indeed!

Much better. And that’s the end!

Wow, that was an elephantine post! I wanted to take yet another opportunity to share the amazing anatomy of elephant feet with you. You’re all now qualified experts if you made it this far!

Any questions?

Read Full Post »

Goat morphology is cool! (from work with local artist)

I posted the above photo once before, but didn’t explain any of the fun details of artist-designer Thomas Thwaites‘s visit to the RVC to dissect a goat with us. Now his show has just finished in London, celebrating the end of his project and the near-completion of his book about his experience trying to live life as a goat. This week, I went to his east side gallery and had some time to chat with Thomas about his transhuman experiences. Because the project has a strong biomechanics, anatomy, art and science theme to it, I’m posting a photo-blog post about all of that. It’s goat to be seen to be believed! I for one wouldn’t mind being a goat right now; I could use a break from my decrepit body…

Stomach-Churning Rating: Too late, there’s the goat pic above and more like it below. I’d give those a 8/10; no kidding. The puns make it worse, too.

The context

The context. Thomas never did get to gallop (sorry, spoiler!) but he did manage a trot, and some other capricious behaviours. I forgot to ask him if he’d tried the Goat Simulator. I have; it’s good for an hour of fun hircosity.

Starting the dissection at the RVC.

Starting the dissection at the RVC, to get inside a goat.

Hide.

Hide.

Fore- and hindlimbs.

Fore- and hindlimbs; comparative design for inspiring prosthetics.

Dissections!

Dissections on display!

Prototype goat-suits. Their mobility was too limited.

Prototype goat-suits. Their mobility was too limited.

The prototype in the foreground could not move without falling down.

The prototype in the foreground could not move without falling down.

Goat-suit shots.

Inhabited-goat-suit shots.

The Goat-Suit: custom made prothetics, a helmet, and some form-fitting casts.

The final Goat-Suit: custom prosthetics, a helmet, and some form-fitting casts.

Thomas Thwaites with the goat-suit.

Thomas Thwaites with the goat-suit.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms. It was made by a prosthetics clinic up in Salford.

Showroom

Photos from rambling around the Swiss Alps in the goat-suit with goats.

Trip-trap-trip-trap...

Trip-trap-trip-trap… (but no trolls)

Goat-suit in action!

Goat-suit in action! With Goat-Pro camera, I see.

Acceptance?

Acceptance?

And the goat that we had dissected, skeletonized at RVC and re-articulated by Thomas:

Do goats wish they were human?

Do goats wish they were human?

What are you looking at?

What are you looking at?

Close-up of goat head.

Close-up of goat head and shoulders.

Goat hooves-on-hips

Goat hooves-on-hips; a gruff pose.

So like us.

So like us.

Read Full Post »

I have an impression that there is a large disparity between how the public views museums and how scientists who use museums view them. Presumably there are survey data on public attitudes, but surely the common impression is that museums mainly exist to exhibit cool stuff and educate/entertain the public. Yet, furthermore, I bet that many members of the public don’t really understand the nature of museum collections (how and why they are curated and studied) or what those collections even look like. As a researcher who tends to do heavily specimen-oriented and often museum-based research, I thought I’d take the opportunity to describe my experience at one museum collection recently. This visit was fairly representative of what it’s like, as a scientist, to visit a museum with the purpose of using its collection for research, rather than mingling with the public to oggle the exhibits — although I did a little of that at the end of the day…

Stomach-Churning Rating: 4/10; mostly bones except a jar of preserved critters, but also some funky bone pathologies! Darwin hurls once, totally blowing chunks, but only in text.

Early camel is sitting down on the job at the NHMLA.

Early camel is sitting down on the job at the NHMLA.

About two weeks ago, I had the pleasure to spend a fast-paced day in the Ornithology collection of the Natural History Museum of Los Angeles County (NHMLA or LACM). I arranged the visit (you have to be a credible researcher to get access; luckily I seemed to be that!) via email, took an Uber car to the museum, and was quickly cut loose in the collection. I was hosted by the Collections Manager Kimball Garrett, who is an avid birder (adept at citizen science, too!) and a longtime LA native.

Amongst museum curators and collections managers (there can be a distinction between the two but here I’ll refer to them all as “curators”), there is a wide array of attitudes toward and practices with museum collections, regarding how the curators balance their varied duties of not only making the museum collection accessible to researchers (via behind-scenes studies) and the public (via exhibits and behind-scenes tours etc.), but also curation (maintaining a record of what they have in their collection, adding to it, and keeping the specimen in good condition), research, admin, teaching and other duties.

Most curators I’ve known, like Kimball, are passionate about all of these things, and very generous with their time to help scientists make the most of the collection during their visit, offering hospitality and cutting through the bureaucracy as much as possible to ensure that the science gets done. There are those few curators that aren’t great hosts because they’ve had a bad day or a bad attitude (e.g. obsession with paperwork and finding obstacles to accessing specimens for research; or just not responding to communication), but they are few and far between in my experience.

Regardless, the curator is the critical human being that keeps the wheels of specimen-based museum research rolling, and I am appreciative of how deeply dedicated and efficient most curators are. Indeed, I enjoy meeting and chatting with them because they tend not only to be fun people but also incredibly knowledgeable about their collection, museum, and area of expertise. Sadly, this trip was so time-constrained that I didn’t get much time at all for socializing. I had about five hours to get work done so I plunged on in!

Images, as always, can be clicked to emu-biggen them. Thanks to the NHMLA for access!

My initial look down the halls of the osteology storage. Rolling cabinets (on the right) are a typical sight.

My initial look down the halls of the osteology storage. Rolling cabinets (on the right) are a typical sight.

Freezers ahoy!

Freezers ahoy! With Batman watching over them.

A jar of bats? Why not? Batman approves.

A jar of bats? Why not? Batman approves.

The curator cleared a space on a table for me to set bones on. Then the anatomizing and photographing began!

The curator cleared a space on a table for me to set bones on. Then the anatomizing and photographing began!

On entering a museum collection, one quickly gets a sense of its “personality” and the culture of the museum itself, which emerges from the curator, the collection’s history, and the museum’s priorities. There are fun human touches like the ones in the photos below, interspersed between the stinking carcasses awaiting skeletonization, the crumbling bone specimens on tables that need repair or new ID tags, or the rows upon rows of coffee cups ready to fuel the staff’s labours.

Yet another reason why Darwin kicks ass.

Yet another reason why Darwin kicks ass. And fine curator-humour!

Ironic bird pic posted on the wall.

Ironic bird pic posted on the wall.

Below a typical wall-hanging of a bovid skull, an atypical display of a clutch of marshmallow peeps. Contest to see whether the mammalian or pseudo-avian specimens last longest?

Below a typical wall-hanging of a bovid skull, an atypical display of a clutch of marshmallow peeps. Contest to see whether the mammalian or pseudo-avian specimens last longest?

The NHMLA’s collection is a world-class one, which I why I chose it as the example for this post. When I entered the collection, I got that staggering sense of awe that I love feeling, to look down the halls of cabinets full of skeletonized specimens of birds and be overwhelmed by the vast scientific resource it represents, and the effort it has taken to create and maintain it. Imagine entering a library in which every book had the librarian’s hand in writing and printing it, and that those books’ contents were largely mysteries to humanity, only some of which you could investigate during your visit. Museum collections exist to fuel generations of scientific inquiry in this way. Their possibilities are endless. And that is why I love visiting them, because every trip is an adventure into the unknown– you do not know what you will find. Like these random encounters I had in the collection’s shelves:

Sectioned moa thigh bones, showing thick walls and spars of trabecular bone criss-crossing the marrow cavities.

Sectioned moa thigh bones, showing thick walls and spars of trabecular bone criss-crossing the marrow cavities.

My gut reaction was that this is a moa wishbone (furcula)- not often seen! It is definitely not a shoulder girdle (scapulocoracoid), which would be larger and more robust, and have a proper shoulder joint. It could, though, be a small odd rib, I suppose.

My gut reaction was that this is a moa wishbone (furcula)- not often seen! It is definitely not a shoulder girdle (scapulocoracoid), which would be larger and more robust, and have a proper shoulder joint. It could, though, be a small odd rib, I suppose. EDIT: Think again, John! See 1st comment below, and follow-ups. I seem to be totally wrong and the ID of scapulocoracoid is right.

A cigar box makes an excellent improvised container for moa toe bones- why not?

A cigar box makes an excellent improvised container for moa toe bones- why not?

Moa feet: all the moa to love!

Moa feet: all the moa to love!

May the skull of the magpie goose (Anseranas semipalmata) haunt your nightmares.

May the skull of the magpie goose (Anseranas semipalmata) haunt your nightmares.

Double-owie: headed shank (tibiotarsus) bone of a magpie goose (Anseranas semipalmata). No mystery why this guy died: vet staff at the zoo tried to fix a major bone fracture, and it had time to heal (frothy bone formation) but presumably succumbed to these injuries/infection.

Healed shank (tibiotarsus) bone of the same magpie goose as above. It had its own nightmares! No mystery why this guy died: vet staff at the zoo tried to fix a major bone fracture (bracing it with tubes and metal spars), and it had time to heal (see the frothy bone formation) but presumably succumbed to these injuries/infection.

Kiwi (Apteryx australis mantelli) hand, showing feather attachments and remnant of finger(s).

Kiwi (Apteryx australis mantelli) hand, showing feather attachments and remnant of finger(s).

Now that I’m in the collection shelves area, it brings me to this trip and my purpose for it! I wanted to look at some “basal birds” for our ongoing patella (kneecap) evolution project, to check which species (or individuals, such as juveniles/adults) have patellae. Every museum visit as a scientist is fundamentally about testing whether what you think you know about nature is correct or not. We’d published on how the patella evolved in birds, but mysteries remain about which species definitely had a patella or how it develops. Museum collections often have the depth and breath of individual variation and taxonomic coverage to be able to address such mysteries, and every museum collection has different strengths that can test those ideas in different, often surprising, ways. So I ventured off to see what the NHMLA would teach me.

Shelves full of boxes, begging to be opened- but unlike Pandora's box, they release joyous science!

Shelves full of boxes, begging to be opened- but unlike Pandora’s box, they release joyous science!

Boxes of kiwis, oh frabjous day! A nice sample size like this for a "rare" (to Northern hemispherites) bird is a pleasure to see.

Boxes of kiwis, oh frabjous day! A nice sample size like this for a “rare” (to Northern hemispherites) bird is a pleasure to see.

Well, in my blitz through this museum collection I didn’t see a single damn patella!

As that kneecap bone is infamously seldom preserved in nice clean museum specimens, this did not surprise me. So I took serendipity by the horns to check some of my ideas about how the limb joints in birds in general develop and evolve. One thing I’ve been educating myself about with my freezer specimens and with museum visits (plus the scientific literature) is how the ends (epiphyses) of the limb bones form in different species of land vertebrates (tetrapods). There are complex patterns linked with evolution, biomechanics and development that still need to be understood.

Left side view of the pelvis of a very mature, HUGE Casuarius casuarius (cassowary). The space between the ilium (upper flat bone) and ischium (elongate bone on middle right side) has begun to be closed by a mineralization of the membrane that spanned those bones in life. A side effect of maturity, most likely. But cool- I've never seen this in a ratite bird before, that I can recall.

Left side view of the pelvis of a very mature, HUGE Casuarius casuarius (cassowary). The space between the ilium (upper flat bone) and ischium (elongate bone on middle right side) has begun to be closed by a mineralization of the membrane that spanned those bones in life. A side effect of maturity, most likely. But cool- I’ve never seen this in a ratite bird before, that I can recall.

Hatchling ostrich thigh bones (femora), showing the un-ossified ends that in life would be occupied by thick cartilage.

Hatchling ostrich thigh bones (femora), showing the pitted, un-ossified ends that in life would be occupied by thick cartilage.

A more adult ostrich's femora, with more ossified ends and thinner cartilages.

A more adult ostrich’s femora, with more ossified ends and thinner cartilages.

Rhea pennata (Darwin's rhea) femora (thigh bones), left (top) one with major pathology on the knee end; overgrown bone. Owie!

Rhea pennata (Darwin’s rhea) femora; right (top) one with a major pathology on the knee end; overgrown bone (osteoarthritis?). Owie!

Also very-unfused knee joints of a Darwin's rhea. Cool Y-shape!

Also very-unfused knee joints of a Darwin’s rhea hatchling. Cool Y-shape!

In birds, most of the bones don’t have anything that truly could be called an epiphysis– the bone ends are capped with thick cartilage that only gradually becomes bone as the birds get older, and even old-ish birds can still have a lot of cartilage (see photos above)– no “secondary centre” (true epiphysis) of bone mineralization ever forms inside that cartilage. However, there are two curious apparent exceptions to this absence of true epiphyses in avian limbs:

(1) in the knee joint, something like an epiphysis forms on the upper end of the tibia (shank bone) and fuses during growth (shown below). Sometimes that unfused epiphysis is confused with a patella, as our recent paper discussed; in any case, where that “epiphysis” came from in avian evolution is unclear. But also:

(2) in the ankle joint, several bones on both sides (shank and foot) of the joint fuse to the long-bones of the limbs, acting like epiphyses. It is well documented by the fossil record of non-avian and avian dinosaurs that these were the tarsals: at least five different bones (astragalus, calcaneum and distal tarsals) were individual bones for millions of years in various dinosaurs, then these all fused to form the “epiphyses” of the shank and foot, eventually completing this gradual fusion within the bird lineage. Modern birds obliterate the boundaries between these five or more bones as they grow.

These are worthwhile questions to pursue because they show us (1) how odd, little-explored features of the avian skeleton came to be; and (2) potentially more generally why limb bones develop the many ways they do in vertebrates, and how they might develop incorrectly — or heal if damaged.

Images below from the NHMLA collections show how this is the case. Fortunately(?) for me, they supported how I thought the “epiphyses” of avian limbs develop/evolved; there were no big surprises. But I still learned neat details about how this happens in individual species or lineages, especially for the knee joint.

Juvenile kiwi's shank (tibiotarsus) bones viewed from the top (proximal) ends, showing the bubbly nubbins of bone (very bottom of each bone image) that are the "cranial tibial epiphyses" often mistaken for patellae.

Juvenile kiwi’s shank (tibiotarsus) bones viewed from the top (proximal) ends, showing the bubbly nubbins of bone (very bottom of each bone image; lighter region) that are the “cranial tibial epiphyses” often mistaken for patellae.

Subadult kiwi's tibiotarsi in same view as above, showing the epiphyses fusing onto the tibiae.

Subadult kiwi’s tibiotarsi in same view as above, showing the smooth triangular epiphyses fusing onto the tibiae.

Adult kiwi's tibiotarsi (sorry, blurry photo) in which all fusion is complete.

Adult kiwi’s tibiotarsi (sorry, blurry photo) in which all fusion is complete.

Looking down at the top/ankle end of the tarsometatarsal (sole) bones in a hatchling ostrich: the three bones are separate and hollow, where "cartilage cones" would have filled them in.

Looking down at the top/ankle end of the tarsometatarsal (sole) bones in a hatchling ostrich: the three bones are separate and hollow, where “cartilage cones” would have filled them in. The left and right bones have different amounts of ossification; not unusual in such a young bird.

Ossified tendons (little spurs of long, thin bone) on the soles of the feet (tarsometatarsal bones) of a brush-turkey (Alectura lathami)- seldom described in this unusual galliform bird or its close relatives, and thus nice to see. These would be parts of the toe-flexor tendons.

Ossified tendons (little spurs of long, thin bone) on the soles of the feet (tarsometatarsal bones) of a brush-turkey (Alectura lathami)- seldom described in this unusual galliform bird or its close relatives, and thus nice to see. These would be parts of the toe-flexor tendons. Another nice thing about these two tarsometatarsus specimens is that their fusion is basically complete- each is one single bone unit, as in normal adult birds, rather than five or more.

My visit to the NHMLA bird bone collection was a lot of fun, because I got to do what I love: opening box after box of bone specimens, with bated breath wondering what would be inside. In this case, familiarity was inside, but my knowledge of avian bone development and evolution still improved. I got to look at a lot of ostriches, rheas, cassowaries and kiwis, more than I’d seen in one museum before, and that broadened my sample of young, juvenile and adult animals that I’d seen for these species. Their knees and ankles all grew in grossly similar ways, supporting this assumption in my prior work and building my confidence in published ideas. It’s always good to check such things. Each box opened takes some careful observation and cross-checking against all the facts and ideas swirling around in your head. You take notes, scale photos, measurements, do comparisons between specimens, and just explore; letting your curiosity run unleashed as you assemble knowledge, Tetris-like, in your mind.

And I had a lot of fun because a museum collection visit is like swimming in anatomy. You’re surrounded by more specimens than you could ever fully comprehend. Sometimes you run across an odd specimen whose anatomy tells you something about its life, like pathologies such as the terrible fractured magpie goose leg shown above. Or you see some curatorial touch that makes you chuckle at an apparent inside joke or mutter respect for their careful organization in tending their charges. That feeling of pulling open a museum drawer or box lid and peering inside is like few others in science — there might be disappointment inside (e.g. “Crap, that specimen sucks!”), boredom (“Oh. Another one of these!?”) or the joy of discovery (“Holy *@$£, I’ve never seen that before!”). My first scientific publication (in 1998) came from rummaging through the UCMP museum collections as a grad student and spotting an obscure pelvic bone that turned out to be highly diagnostic for the equally obscure clade of bird-like dinosaurs called alvarezsaurids. I happened to open that drawer with the alvarezsaurid specimen at the right time, shortly after the first ever specimen of that dinosaur had been described in the literature (~1994). Before then, no one could have identified what that bone was!

There is time for hours of quiet introspection during museum collection studies, immersed in this wealth of anatomical resources and isolated in a silent, climate-controlled tomb-like hall. It is relaxing and overwhelming at the same time. Especially in my case with just five hours to survey numerous species, you have to budget your time and think efficiently. It’s a unique challenge to explore a museum collection as a researcher. If you don’t learn something — especially in a good museum collection — you’re doing it wrong. In this time of tight finances and trends to close museums or stow away precious collections, it is important to vocally celebrate what a vast treasure museum collections are, and how the people that maintain them are vital stewards of those treasures.

I set the cat amongst the pigeons by also visiting the Page Museum at the La Brea Tar Pits in LA, to study fossil cats-- like this American lion (Panthera atrox) code-named "Fluffy", that we CT scanned during my LA visit-- more about that later!

I set the cat amongst the pigeons by also visiting the Page Museum at the La Brea Tar Pits in LA, to study fossil cats– like this American lion (Panthera atrox), code-named “Fluffy”, that we CT scanned during my LA visit– more about that later!

EDIT: I hurried this post off during my free time today, and still feel I didn’t fully capture the deep, complex feelings I have regarding museum collections and the delight I get from studying them. Other freezerinos, please add your thoughts in the Comments below!

Read Full Post »

In early 2011, I got a fun email from a producer at National Geographic TV about a new project they were planning, which involved dissecting a full-scale model of a Tyrannosaurus rex in a documentary to be called “T. rex Autopsy.” Things fell silent for some months, then I got another email saying they were moving forward, then things fell silent again. Three and a half years later I got another email, this time from a producer at Impossible Factual films (working with NatGeo), saying that the show was finally moving forward for real. (This sort of thing is normal for documentaries; time scales can be long and unpredictable, or very fast-paced) This email invited me to be a primary scientific consultant in the design of the creature and show. Of course, anatomical dissection and T. rex are what I’m about as a scientist; two of my major research areas; so bringing them together was like a dream come true and I leapt into that dream with enthusiasm.

(Meanwhile, circa 2010-11, another TV channel filmed me for a different programme in which a whole, fresh-ish T. rex was found weathering out of an Alaskan cliffside and scientists had ~2 days to study it before it fell into an abyss– it’s probably best that that show never happened… there were fundamental flaws.)

Stomach-Churning Rating: 0/10. Merciful. No gory images here, just text descriptions and 2 glamour shots, for various reasons. The TV show is not for small children, though. I am guessing that the final programme will be about a 7/10 SCR because of gooey, seemingly rancid, but rubbery (so it doesn’t look overly real, but still looks great) dinosaur vital organs. For more pictures, see the links to tweets, trailers and news stories below.

I introduced T. rex Autopsy to you in the previous post, I’ve been tweeting and retweeting extensively since then, and one of my later posts will be a “postmortem” of the show, which airs June 7 worldwide. My feeling is that, if what I’ve seen so far is indicative of the whole show, it will be a landmark moment in palaeontological documentary history. T. rex Autopsy fuses the best aspects of “Inside Nature’s Giants” with “Walking With Dinosaurs”, and without “Alien Autopsy” pseudoscience. Indeed, it seems to be a very science-based documentary (once you get past the requisite conceit that scientists could actually find a very fresh T. rex body– that’s the only sci-fi bit of the show, quickly dispensed with!). T. rex Autopsy is packed with evidence-based palaeobiology, and has consistently been so since I first spoke to producers, which was a great comfort to me.

This post is about my role in the show, my perspective on it, and an attempt at a spoiler-free prelude. I’m willing to go out on a limb a bit and urge people to watch it, because I’m already proud of what was attempted in the show– it was a bold vision by NatGeo and laborious execution by everyone involved. I especially want to give a big shout of respect out to creature designers Crawley Creatures (led by Jez Gibson-Harris [interview here], who helped create Jabba the Hutt and the Dark Crystal beings, among others). Around 14 people on Jez’s team worked full time for ~4 months to make the T. rex. The designers based the proportions on the Field Museum’s scans of “Sue”, which I helped them get access to (I’d used them for our PLOS ONE paper in 2011). That, and numerous comments on their draft dinosaur’s body proportions and limb positions (e.g. avoiding “bunny hands“), was some of my first major involvement in the programme.

Edwina revealed! 

(photo credit:  National Geographic Channels/Stuart Freedman)

Edwina revealed! 

(photo credit: National Geographic Channels/Stuart Freedman)

Over 200 emails (I was curious; I counted them!) and a bunch of phone calls and 7 months later, my input on the T. rex Autopsy film shoot and production was finishing. Just last week, I sent what supposedly was my last email of input on the show, about predatory habits (NOT the dumb scavenger debate we’re all tired of; more about ambush vs. pursuit habits). I’d spent many hours going over drafts of T. rex‘s anatomy and function and behaviour from head to tail with the superb Impossible Factual film production team (mainly Assistant Producer Cressida Kinnear). Very often, to their credit, they’d already done a lot of literature searching and speaking with key experts on dinosaur jaws or brains or breathing, so I just had to check the fine details, but in some cases I had to recommend experts to speak to and/or do my own sleuthing and educate myself about aspects of T. rex biology I’d never pondered much.

For example, how big was T. rex‘s heart? I’d been asked the same question about sauropods lately for another show so I had references and an Excel spreadsheet ready to go, and plugged in some values, but the estimates I got seemed too small relative to the thoracic cavity (mediastinum if you must). I had some interesting back-and-forth discussions with the producers and we settled on one size that seemed “right”. No one that I knew of had tried to scientifically estimate the size of a T. rex‘s heart, probably because there hadn’t been a good reason to try. Sauropods get all the dino-love in regards to blood pressure issues and heart size, for good reasons- for them, it should have been a serious biomechanical challenge to pump blood up the long neck to the brain. For an elephant-sized T. rex, it doesn’t boggle the scientific mind so much that blood pressure wasn’t such a major evolutionary design constraint. See the show and find out more about what the intrepid team of dissectors found…

Did T. rex have feathers? This was important to get right, I felt, and not just show T. rex as a leathery or scaly beast, which is outdated. As I put it, it’s more speculative to show T. rex without any feathery thingies than to show it with some. We passed around draft images and thoughts and agreed on a slightly fuzzy, bristly body, especially in some regions of the head/neck, arms and tail tip. I encouraged the design team to go for more colour (I wrote to the designers “Skin colouring: go nuts! Feathery things should be colourful. Big animals tend to be more drab in colour but that doesn’t mean a boring grey/green, and certainly there should be some regional patterning. I like the idea of there being brightly coloured areas on the face”). We can be confident that dinosaurs could see colour like most land animals (except many mammals!) can. All of this is pretty familiar to palaeo-artists and fans of modern dinosaur reconstructions, so I won’t belabour it more. I’m glad that much of this made it into the final design. It’s not your overly familiar Jurassic Park T. rex.

Cheeks, eye pupils, brain/senses, how big a mouthful of meat it could swallow, furcula (wishbone), gastralia (belly ribs- I gave a lot of detailed criticism here), reproductive anatomy and biology, eggs, body fat, growth, air sacs, stomach, and excretory system, among other things: we covered them all in discussing the dino’s design, and I learned a lot along the way.

A memorable part of my discussions with the designers, in early March, was about the intestines and cloaca (rear-end opening): they initially put the cloaca too far forward on the body, I got them to move it backward, then I later realized in a panic that, making a neophyte error, I’d missed a key anatomical feature in the hips that clearly would put the “vent” even further backward, so I send them a hasty email apologizing that I’d missed this and urging that they fix their graphics and animations. I felt bad about this as it was late in the design phase and I’m sure I stressed out the team to make this change, but I thought it would be embarrassing to get the position of that hole wrong. Yet it was also funny to me to be scrutinizing where the “poop hole” of a dinosaur should go, and worrying so much about getting it right… my scatological sense of humour was in overdrive. By the middle of March they had this detail right. Phew!

There is another dinosaur that makes an appearance in the documentary but I don’t want to spoil it. Suffice it to say that one dinosaur from another time period and continent was initially chosen, and I (echoed by Dave Hone, I know) urged them not to do that, choosing a more appropriate Hell Creek Formation dinosaur. Phew! Perhaps more about that later.

Finally, of course we talked about legs and muscles and locomotion. I was filmed at the RVC discussing this, and it looks like it will be a cool segment, including an explanation of how the bones reveal the anatomy of the soft tissues of limbs and other parts of the body (i.e. bread-and-butter from my PhD thesis work). I hope that makes the final cut! (Edit: I’m told it has; yay!) There may even be footage of me dissecting a chicken and talking about enlarged and reduced leg muscles in birds, in any “making of” side-programme.

But I was not one of the four people doing the T. rex dissections in the show. That arduous job (2 looooooong days of filming!) fell to vet Luke Gamble and palaeontologists Tori Herridge, Steve Brusatte and Matthew Mossbrucker, with a crew of assistants including some from Crawley Creatures. The clever idea the producers had, as they explained it to me, was to keep my and others’ scientific input on the show’s design separate from the dissectors’ knowledge, so that when the dissection team arrived and cut into the dinosaur, they’d be discovering things without much advance inside knowledge of what to expect to find. We’ll see how that worked when the programme airs– I’ve only seen the trailer and behind-the-scenes footage, as well as the first day of filming. Scientists like me aren’t Shakespearean actors so it’s hard to act surprised when you sort of know what’s coming and have to redo takes of that same surprise. But if you come to T. rex Autopsy expecting Oscar-worthy theatrics, you’ve missed the point. 🙂

A taxi drove me to Pinewood Studios (west of London; site of filming many blockbusters) on a Sunday morning in late April. I walked into the giant studio where a 12+ meter long T. rex carcass lay in dramatic lighting. Cue the freezing of my giant grin in place and my eyes wide open. I was stunned! It was gorgeous, and the scale of the carcass left me gobsmacked. I’d only seen various incarnations of it during the design phase, from wire mesh scale models to clay sculptures to full-on foam casts and CGI representations; and all of these just as digital files emailed to me. But to see “Edwina,” as she was called, in the pseudo-flesh, was a moment I may never forget. Emailed JPGs definitely didn’t prepare me for that visual splendour. Crawley’s team were still inserting some of the last ~20,000 goose feathers as bristles into the hide, one by one…

I was at Pinewood to spend a day hobnobbing with VIPs and international press visitors as a “tour guide” to the Edwina autopsy event, and then for a day to watch the initial half of filming with the press in a room overlooking the studio. I got excellent hospitality, was called the “on-screen talent” in documents, which felt really weird to me (I’d never been called that in >10 shows before), and I spent a lot of time explaining the show and dinosaur science to that receptive, inquisitive audience. And gawking at the unfolding spectacle before and during filming. And cracking jokes with journalists during long breaks between actual filming of the documentary. It was a surreal, awesome experience and I loved it. (And, as I’ve insisted scientists in documentaries are, I got paid for it.)

A few minutes after I met Edwina. Still in awe. 

(photo credit:  National Geographic Channels/Stuart Freedman)

A few minutes after I met Edwina. Still in awe.

This documentary was a blast to be involved in and challenged all my skills as a dinosaur expert and biologist as well as a fan of documentaries, monster movies and anatomical artistry! I give a big hat-tip to NatGeo for taking the plunge on this adventure in the first place, to the amazing creature creators, to the film and production crew, to the many jovial journalists I met, and to the four faux-bloodied, surely exhausted dissectors starring in the show– and to Edwina. This was an impressive collaboration drawing together the best that the media, monster-makers and an international team of scientists (aside from the ones I’ve mentioned already, many others too!) can do together. I feel lucky to have been involved, and I think I’ll be looking back on this event as a highlight of my career, especially as a science communicator; much like consulting on Inside Nature’s Giants is a highlight.

I’m as excited as anyone to see how it turns out. Just 2.5 weeks to go — are you excited too? What would you want to see in a T. rex dissection? Where would your first cut be if you did the dissection? “Jurassic World”, what’s that?

EDIT: The first 5 minutes of the show are here!  https://www.yahoo.com/tv/t-rex-autopsy-watch-the-first-5-minutes-who-119918868060.html 

Read Full Post »

This week was a great week for me and giant dinosaurs in many ways, so I’m sharing that experience via photos and a bit of backstory. I hope you like it.

Stomach-Churning Rating: 1/10. Big birds and bones but no barfing.

First, I attended the filming of a new documentary, “T. rex Autopsy” (due for release on 7 June on NatGeo TV, just in time to steal the thunder of get you excited for Jurassic World), on the edge of London. I’m allowed to post these two photos of it. Expect much, much more information later– and I think you will like that information when it comes! Not quite a 50′ tall bird, but… So. Damn. Cool.

trex-autopsy2

trex-autopsy1

Second, my team and I dissected a big animal I’ve mentioned here before. For various reasons, I won’t/can’t post images or details of it right now, but I hope to soon. It’s not a dinosaur, but it was giant as its kind goes, so I’m wedging it in here.

Third, and this is the main impetus for my post, I finally got to see the giant chicken! No, not this one that I recall from my childhood…

hoboken

But this one! A 50’/13m tall chicken made by teacher Ben Frimet’s team of students and teachers at the City of London Academy!

Shortly after my first encounter.

Shortly after my first encounter. I’m still in a state of awed shock. And shadow.

The megachicken was unveiled at a “Chickenfest” event celebrating the sculpture’s completion. Chickenfest also prominently involved members of the “Chicken Coop” team who have drawn together scientists, humanities scholars, artists and more to investigate “Cultural & Scientific Perceptions of Human-Chicken Interactions” — more details here. Their theme helped unite the event’s various displays and lectures as well as some of the City of London Academy’s teaching topics, which inspired students to look at chickens from many angles. The event was so fun and truly integrative that it had me clucking with joy, but the anatomically accurate giant chicken art piece stole the show (as intended). Enjoy the photo tour below.

Giant Chicken 5

Pelvic/thigh region! (no patella, but hey)

Giant Chicken 6

Great views from up to 3 storeys around it.

Giant Chicken 3 Giant Chicken 4 Giant Chicken 7 Giant Chicken 8 Giant Chicken 9

Little chickens made of fast-food forks and stuff.

Little chickens made of fast-food forks and stuff. Very clever.

Chicken bones

One of our research chickens, a 30-day-old broiler, skeletonized by the Chicken Coop team and brought to the event. Chunky and funky!

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira-Neves) presented a stall with motion capture and chicken bones, like this fun identification display.

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira Neves) presented a stall with motion capture demos and chicken bones, like this fun identification display.

What will happen to that giant chicken art piece? This is yet to be determined, and was the question asked of the lecture panel (including me, who gave a lame answer involving King’s Cross’s birdcage). It was unanimous that it must not be destroyed– as long as it does not go on a destructive rampage through London…

One of my favourite films of my teenage years, Beastmaster, lends me a phrase I’ll throw out here like a razor-edged boomerang-thing: “Life is a circle. We will meet again.” And so, at the Chickenfest event, past and present worlds collided. I happened to be there presenting a talk just before Luis Rey. Almost exactly 13 years ago, Luis had done this classic T. rex vs. giant chicken race for my “T. rex was not a fast runner” paper in Nature. He likewise has blogged about the Chickenfest event, so check that out!

T. rex vs. chicken race, by Luis Rey

Coincidentally, there was ANOTHER 50′ tall bird placed not far from that giant chicken in southeast London this week, for a very different reason- a huge Norwegian Blue parrot in celebration of the Monty Python reunion! And I’ve been a Monty Python fan since age ~11, so that rocks my world two times over.

IMAGE: FLICKR USER TAYLOR HERRING

IMAGE: FLICKR USER TAYLOR HERRING

Two giant birds in London in one week. It doesn’t get any better than that– unless there were three such birds– if I missed one, chime in in the Comments!

(Edit: British friends tell me I must refer to an Alan Partridge skit here, so I am doing so. I know when to do as I’m told.)

Read Full Post »

« Newer Posts - Older Posts »