Feeds:
Posts
Comments

Archive for the ‘Biomechanics’ Category

We released a publication that, for me, comes full circle with research that started my career off. Back in 1995 when I started my PhD, I thought it would be great to use biomechanical models and simulations to test how extinct dinosaurs like Tyrannosaurus rex might have moved (or not), taking Jurassic Park CGI animations (for which the goal was to look great) into a more scientific realm (for which the goal is to be “correct”, even at the cost of beauty). “It would be great”, or so I thought, haha. I set off on what has become a ~26 year journey where I tried to build the evidence needed to do so, at each step trying to convince my fairly sceptical mind that it was “good enough” science. For my PhD I mainly focused on reconstructing the hindlimb muscles and their evolution, then using very simple “stick figure”, static biomechanical models of various bipeds to test which could support fast running with their leg muscles, culminating in a 2002 Nature paper that made my early career. I since wrote a long series of papers with collaborators to build on that work, studying muscle moment arms, body/segment centre of mass, and finally a standardized “workflow” for making 3D musculoskeletal models. And gradually we worked with many species, mostly living ones, to simulate walking and running and estimate how muscles controlled observed motions and forces from experiments. This taught us how to build better models and simulations. Now, in 2021, our science has made the leap forward I long hoped for, and the key thing for me is that I believe enough of it is “good enough” for me, which long held me back. This is thus my personal perspective. We have a press release that gives the general story for public consumption; here I’ve written for more of a sciencey audience.

Skeleton of the extinct theropod Coelophysis in a running pose, viewed side-on. Image credit: Scott Hocknull, Peter Bishop, Queensland Museum.

Stomach-Churning Rating: 1/10: just digital muscles.

Earlier in 2021, we simulated tinamou birds in two papers (first one here), the second one revealing our first ever fully predictive simulations, of jumping and landing; detailed here and with a nice summary article here. That research was led by DAWNDINOS postdoc Peter Bishop and featuring new collaborators from Belgium, Dr. Antoine Falisse and Prof. Friedl De Groote. Thanks to the latter duo’s expertise, we used what is called direct collocation (optimal control) simulation; which is faster than standard “single-shooting” forward dynamic simulation. The simulations also were fully three-dimensional, although with some admitted simplifications of joints and the foot morphology; much as even most human simulations do. The great thing about predictive simulations is that, unlike tracking/inverse simulations (all of my prior simulation research), it generates new behaviours, not just explaining how experimentally observed behaviours might have been generated by neuromuscular control.

OK, so what’s this new paper really about and why do I care? We first used our tinamou model to predict how it should walk and sprint, via some basic “rules” of optimal control goals. We got good results, we felt. That is the vital phase of what can be called model “validation”, or better termed “model evaluation”; sussing out what’s good/bad about simulation outputs based on inputs. It was good enough overall to proceed with a fossil theropod dinosaur, we felt.

Computer simulation of modern tinamou bird running at maximum speed. Grey tiles = 10 cm.

And so we returned to the smallish Triassic theropod Coelophysis, asking our simulations to find optimal solutions for maximal speed running. We obtained plausible results for both, including compared against Triassic theropod footprints and our prior work using static simulations. Leg muscles acted in ways comparable with how birds use them, for example, and matching some of my prior predictions (from anatomy and simple ideas of mechanics) of how muscle function should have evolved. The hindlimbs were more upright (vertical; and stiff) as we suspect earlier theropods were; unlike the more crouched, compliant hindlimbs of birds.

TENET: Thou shalt not study extinct archosaur locomotion without looking at extant archosaurs, too!
Computer simulation of extinct theropod dinosaur Coelophysis running at maximum speed. Grey tiles = 50 cm.

We observed that the simulations did clever things with the tail, swinging it side-to-side (and up-down) with each step in 3D; and in-phase with each leg: as the leg moved backward, the tail moved toward that leg’s side. With deeper analyses of these simulations, we found that this tail swinging conserved angular momentum and thus mechanical energy; making locomotion effectively cheaper, analogous to how humans swing their arms when moving. This motion emerged just from the physics of motion (i.e., the “multi-body dynamics”); not being intrinsically linked to muscles (e.g. the big caudofemoralis longus) or other soft tissues/neural control constraints (i.e., the biology). That is a cool finding, and because Coelophysis is a fairly representative theropod in many ways (bipedal, cursorial-limb-morphology, big tail, etc.), these motions probably transfer to most other fully bipedal archosaurs with substantial tails. Curiously, these motions seem to be opposite (tail swings left when right leg swings backward) in quadrupeds and facultatively bipedal lizards, although 3D experimental data aren’t abundant for the latter. But then, it seems beavers do what Coelophysis did?

Tail swings this-a-way (by Peter Bishop)
Computer simulation of extinct theropod dinosaur Coelophysis running at maximum speed, shown from behind to exemplify tail lateral flexion (wagging). Grey tiles = 50 cm.

The tail motions, and the lovely movies that our simulations produce, are what the media would likely focus on in telling the tale of this research, but there’s much more to this study. The tinamou simulations raise some interesting questions of why certain details didn’t ideally reflect reality: e.g., the limbs were still a little too vertical, a few muscles didn’t activate at the right times vs. experimental data, the foot motions were awkward, and the forces in running tended to be high. Some of these have obvious causes, but others do not, due to the complexity of the simulations. I’d love to know more about why they happen; wrong outputs from such models can be very interesting themselves.

Computer simulation of modern tinamou bird (brown) and extinct theropod dinosaur Coelophysis (green) running at maximum speed. Grey tiles = 10 cm for tinamou, 50 cm for Coelophysis.

Speaking of wrong, in order to make our Coelophysis walk and run, we had to take two major shortcuts in modelling the leg muscles. The tinamou model had standard “Hill-type” muscles that almost everyone uses, and they’re not perfect models of muscle mechanics but they are a fair start; it also had muscle properties (capacity for force production, length change, etc.) that were based on empirical (dissection, physiology) data. Yet for our fossil, because we don’t know the lengths of the muscle fibres (active contractile parts) vs. tendons (passive stretchy bits), we adopted a simplified “muscle” model that combined both into one set of properties rather than more realistically differentiating them. It was incredibly important, then, that we try this simple muscle model with our tinamou to see how well it performed; and it did OK but still not “perfect”, and that simple muscle model might not work so well in other behaviours. That was the first major shortcut. Second, again because we don’t know the detailed architecture of the leg muscles in Coelophysis, we had to set very simple capacities for muscular force production: all muscles could only produce at most 2.15 body weights of force. This assumption worked OK when we applied it to our simulation of sprinting in the tinamou (vs. average 1.95 body weights/muscle in the real bird), so it was sufficiently justifiable for our purposes. In current work, we’re examining some alternative approaches to these two shortcuts that hopefully will improve outputs while maximising realism and objectivity.

Computer simulation of extinct theropod Coelophysis running at maximum speed, shown alongside running human (at 4 m/s) for scale and context. Image credit: Peter Bishop.

If you pay close attention, our simulations of Coelophysis output rather high leg-forces, and it’s unclear if that’s due to the simple muscle model, the simple foot modelling, or is actually realistic due to the more vertical (hence stiff) hindlimbs; or all of these. Another intriguing technical finding was that shifting the body’s centre of mass forwards slowed down the simulation’s running speed, as one might expect from basic mechanics (greater leg joint torques), but unlike some prior simulations by other teams.

Computer simulation of extinct theropod Coelophysis shown alongside running human for scale and context. Shown from above to illustrate tail wagging behaviour. Image credit: Peter Bishop.

Users of models and simulations are very familiar with catchphrases like “all models are wrong, but some are useful” or the much more cynical (or ignorant) “garbage in, garbage out”; or the very dangerous attitude that “if the mathematics is correct, then the models can’t be that wrong” (but if the biology is wrong, fuggedaboutit!). These are salutary cautionary tales and catechisms that keep us on our toes, because the visual realism that realistic-looking simulations produce can seduce you into thinking that the science is better than it is. It’s not a field that’s well-suited for those fearful of being wrong. I’ll never think these outputs are perfect; that is a crazy notion; but today I feel pretty good. This was a long time coming for me, and it is satisfying to get to this stage where we can push forwards in some new directions such as comparing simulations of different species to address bigger evolutionary questions.

The wrestling with scepticism never ends, but we can make progress while the match goes on.

from WWE… I could not resist

Read Full Post »

The blog is back! Briefly. With dinosaurs. Back in 2005, I published a paper in which I used a “SIMM” 3D musculoskeletal biomechanical model of Tyrannosaurus rex to analyse its muscle actions and infer a relatively upright hindlimb pose. This was an outcome from my NSF-funded postdoctoral research at Stanford University, in which engineers kindly taught me how to use SIMM (handing me a loaded gun?). Part of my plan all along was to build multiple such models along a rough evolutionary sequence to revisit old questions I had with past, qualitative functional morphology papers from 2000 onwards, and see if biomechanics could quantitatively reveal more about the functional evolution of dinosaur hindlimb muscles. So I got data for modelling some extinct dinosaurs (theropods Dilophosaurus, Allosaurus, Velociraptor) and living birds (Struthio, others) and published nuggets of that but held others back…

Stomach-Churning Rating: -1/10; dinosaurs!

I handed these 3D model data off to my PhD student Vivian Allen in ~2007, charging him with the task of making more models to flesh out the phylogeny and finish what I’d started. And he sure did. He graduated, did a couple of postdocs with me, and we gradually massaged his thesis chapter on this topic into a draft paper. Easier said than done, though! That’s why 14 more years have passed.

Viv came up with some clever tools in MATLAB software code (from which he became a very competent programmer and went on to a successful career in that!) to boil complex data on muscle leverages (moment arms) across a wide range of joint motion for the hindlimbs for each taxon.

These data then were fed into further code that took the results from all models, ultimately 13 of them from an Australian freshwater crocodile to two living birds and 10 extinct dinosaurs plus close cousin Mara/Lagosuchus (Figure 1). The code expressed these leverages as changes in ancestral values along the main branch of the evolutionary tree from early (Triassic) “ruling reptile” Archosauria (represented here just by the croc as a proxy) to modern birds, and 9 main ancestral “nodes” in between. Our code tracked both how each of 35 hindlimb muscles we modelled evolved in its leverage, as well as overall “average” leverage of functional groups around the hip, knee and ankle joints.

So, back and forth we went for some 10 years playing with the models (see Video below), data and code, and the paper describing the whole thing, slowly closing in on a final version but also sometimes distracted by our other projects and Real Life Stuff like health and children, and concerns about how we conducted this study (i.e. a lot of fiddling).

Figure 1: Evolutionary tree of dinosaurs and their relatives as used in the study, showing all 13 models, species names, and names of groups along the bottom (red nodes) of the tree. Averostra and Avetheropoda were ancestral groups of theropod dinosaurs that the study inferred had particular specialisations of the hindlimb muscles. Right hindlimbs in side view. The limbs are all straightened vertically into a baseline reference posture but the study investigated variation in muscle function across a wide range of limb poses.

Then I got a new grant “DAWNDINOS” that changed the scene for me, refocusing my team’s energies onto the Triassic (and early Jurassic) and the evolutionary biomechanics of diverse archosaurs’ locomotion, assessed with both LOTS of experimental studies of living crocs and birds, and LOTS of predictive simulations of locomotion. Stay tuned for much more on that from our team, but we’ve already published some key steps here. Most notably, we developed an improved protocol for modelling and simulating our animals, as shown by Bishop et al.’s 2021 study of the early theropod Coelophysis bauri (also appearing in the current paper). Awkwardly for me, that new method rendered our old models and methods a bit obsolete (although still fine), so I pushed to publish this current paper with Viv, and brought collaborator Dr. Brandon Kilbourne on board to aid in some final stats, figures and more. That finally did it, and now we’ve published the paper in Science Advances. Deep breath.

Video: Rotating movies of 3 musculoskeletal models from this study. Models have been posed into representative limb orientations illustrating a gradual or stepwise transformation from more upright to more crouched.

Well what’s the paper about, then? We used our 13 models and processed evolutionary functional patterns to test three main questions (hypotheses) about muscle leverage, making educated guesses at what might prevail from early Archosauria to Aves:

  1. Hip extensor / flexor (i.e. femur retractor/protractor) moment arm ratios remained constant. We weren’t sure what to expect, as these antagonists both seem to change a lot on the whole lineage, so we went with this prediction.
  2. Knee flexor / extensor ratios decreased; i.e. the flexors (“hamstrings” etc.) weakened and/or extensors (equivalent of our quadriceps) strengthened their leverage. Anatomy of the knee joint and muscles around it suggests this, plus since Gatesy’s 1990-onwards studies we’ve expected archosaurs to shift from more ‘hip-based’ to more ‘knee-based’ locomotion as we get closer to avian ancestry.
  3. Hip medial (internal) long-axis rotator / abductor (i.e. pronators of the limb vs. those that draw the leg away from the body) ratios increased. This idea comes right from my paper w/Gatesy in 2000, where we surmised that archosaurs shifted from relying on hip adductors (in crocs/other quadrupeds) to abductors (in bipedal dinosaurs; like humans) to medial rotators (‘torsional control’ as in birds today) during weight support.

Moreover, we reconstructed the evolution of 35 muscles’ actions across ~250 million years, which was a new step.

Here’s a summary of what we found (Figure 2):

Figure 2: Short visualization/explanation of the study’s main insights. Pictures by palaeoartist Jaime Headden: https://qilong.wordpress.com/about/ in left side view, including “muscled” and silhouette images. Right side images include representative hip, knee and ankle muscles from the study. Changes such as the enlargement of muscles in front of the hip that straighten the knee, and reduction of the caudofemoralis longus muscle that runs from the tail to the back of the thigh, are evident.

So, overall hypothesis 1 about hip extensors/flexors ended up complicated; rejected because hip flexor leverage actually increased. Furthermore, we found that around the ancestral nodes for early theropod dinosaurs (Neotheropda through Avetheropoda; around 200 Mya), there were peaks in muscle leverage (size-normalized) that surprised us, and persisted despite many different analyses we threw at them over the years. As far as we could tell, these peaks that kept appearing for various muscles’ actions were “real” (estimates). Which meant these ancestors may have had specialised high leverage relative to both their own ancestors and descendants; the peaks got reversed in evolution. These ancestors had some other weird anatomical and functional traits, such as tightly articulated hip joints early on (which they lost later), increased body size in the later forms, more ‘macropredatory’ ecology (e.g. eating sauropods?), and a centre of mass of the body that was shifted forwards (due to big arms and heads/necks). This weirdness is a cool unexpected finding that showed up for the other hypotheses too, and it needs some more investigating. A ‘failed’ hypothesis test led to neat insights.

Figure 3. From the paper– showing our main results for changes in moment arm ratios across archosaurian ancestors. Hip extensors/flexors decreased then increased; knee flexors/extensors decreased; and hip medial rotators/abductors decreased then had a series of increases.

Hypotheses 2 and 3 found good support, on the contrary, overall (Figure 3). We seem to have been able to quantify the shifts from hip-based to knee-based, and abductor-based to medial-rotator-based, muscle actions. I find that very satisfying. Ankle weight support (extension) capacity also increased, which fits morphological changes fairly well. If you’re into archosaur limb muscle form and function, there’s a lot more food for thought in the paper.

Funnily enough, ~20 years has been sufficient time that we could have had plenty more models in this study if we’d delayed it even longer and re-re-re-analysed our data. But we had to draw the line somewhere and not infinitely revise with every new model we’ve been creating. With the current state of musculoskeletal modelling in my group, we could have more than doubled our sample size and fleshed out the most important gaps such as in the crocodile-lineage (extinct Pseudosuchia) and other Triassic forms plus elsewhere. A big challenge remains having some nice 3D-preserved early fossil birds beyond Archaeopteryx; e.g. so many nice Chinese ones are too flat (e.g. joints we need) to reliably model here. It’s something that can still be done and is worth doing, but I suspect the general trends we’ve found along the dinosaur lineage are “correct”.

What’s personally important to me about this paper is (1) how it not only bridges a huge morphofunctional gap across archosaur evolution in scientific terms, and (2) how we’ve completed a long-delayed project with stubbornness (and during a pandemic!), but also (3) how it bridges my past career from my PhD and postdoc to the present work with DAWNDINOS. We’re now forging well beyond what this new paper has done in terms of truly testing, as best we can (estimate) so far, how limb muscles of archosaurs functioned and evolved, and how these contributed to particular behaviours and performance (maybe even palaeoecology and evolutionary success/extinction?). The current paper is just simple modelling of muscle leverage, but leverage is only one (very important!) piece of muscle function and performance. With fully dynamic, anatomically integrative, physiologically and physically representative biomechanical computer simulations that predict what living and extinct archosaurs could or could not do, we can do even better. So watch for that! Hopefully it won’t all take 20 years, or 250 million.

Read Full Post »

Our special guest post this week comes from Dr. Liz Clark of Yale University in New Haven, Connecticut, USA. She continues to bring biomechanics-fu to echinoderms– the weird marine critters like seastars and sea urchins. Including fossils, as you’ll see today! You may remember her from blog posts such as “Guest Post: Brittle Star Arms Are Weird“.

Stomach-Churning Rating: 1/10; echinoderms are inoffensive.

Imagine that you’re stuck in a cardboard box on the beach, holding a small stick. Could you use the stick to move yourself forward? What would you do? You could try digging into the sediment ahead of you to pull yourself along. You could try rowing side to side, as if you were in a rowboat. Or maybe it’s not possible and you’d give up, decide to stay put, and wave your stick in the air for help.

Believe it or not, this is a strange-but-important dilemma that some paleobiologists- like me!- have been wrestling with for generations. My research specialty is in the biomechanics of locomotion– how organisms use their bodies to get from one place to the next (through walking or swimming, for instance). We can learn a lot about an animal by studying their locomotion, such as why their body is shaped the way that it is, or what role they occupy in their ecosystem. Animal motion is a major inspiration for robotic design, and I work with engineers to apply the novel insights on animal locomotion from my research to create new kinds of devices.

Studying the biomechanics of motion in living organisms is (relatively) straightforward. We can use high-speed cameras, motion capture software, and 3D imaging tools to visualize and understand how organisms move in real-time, informing our inferences about how they perform certain tasks. Inferring locomotion in fossil organisms, on the other hand, is tricky since we can’t observe the organism’s behavior like we could if the organism were alive. Instead of being able to watch the organism move, we’re left with a snapshot of the animal frozen in place in a rock. We’re also missing a lot of physical information: locomotion in most animals requires soft tissue and hard skeletal structures, but typically with fossils, only the hard structures get preserved.

However, we can often garner some insights from living organisms to determine the locomotion strategies that fossil organisms use. Most organisms in the fossil record look at least somewhat similar to organisms alive today. If our fossil has four legs, for instance, we can study locomotion in living tetrapods (four-legged animals) to help us create a framework for deriving inferences about locomotion in our extinct tetrapod fossil animal. But for some really strange-looking animals- ones without obvious modern analogues- we’re not so lucky. For me, this is where the fun begins.

Figure 1: Stylophorans! Here are four fossilized stylophorans from the Helderberg Group of the Early Devonian (YPM 036413)

So getting back to the cardboard box and the stick. These are metaphorical examples of the different locomotion strategies that have been proposed for a group of fossil animals known as stylophorans (Figure 1). Stylophorans are extinct organisms related to sea stars and sea urchins, but with a body structure unlike any organism on the planet today. They have a large, relatively flat body called a theca (i.e., the cardboard box), and a long, thin segmented tail known as the aulacophore (i.e. the stick) (Figure 2). They’re known in the paleontological community as some of “the strangest-looking animals of all time.”

Figure 2: Stylophoran anatomy. The “theca” is the body cavity, and the “aulacophore” comprises of the proximal aulacophore, the stylocone, and the distal aulacophore.

By reconstructing stylophoran locomotion, we can unlock the mechanics of a unique system for motion and its potential applications to engineering. We can also understand more about how this organism lived and functioned in its ancient ecosystem. And, by developing a new approach to understand locomotion in stylophorans, we can apply this strategy to analyze locomotion and movement in other unusual fossil animals as well!

For years, scientists have been documenting the incredible array of stylophoran diversity in the fossil record and making their best predictions about how they would have been able to move (or not!). These predictions are based on their morphology– the structure of an organism’s body. For stylophorans, that means the shape and structure of the theca and aulacophore. There are a variety of stylophoran thecal shapes, ranging from ovoid in Enopleura to trapezoidal in Ceratocystis to almost crescent-shaped in Cortnurnocystis. There’s a similarly wide array of aulacophore morphologies as well.

Figure 3: Left: One half of the concretion within which the stylophoran fossil we analyzed is preserved. Right: The 3D digital image of the stylophoran fossil, created by micro-CT scanning the fossil specimen.

We developed a new approach using 3D imaging (Figure 3) to create a digital model of a stylophoran specimen. We used the model to test if several different locomotion strategies that had been proposed before were physically possible or impossible for a stylophoran to actually perform.

First, we used a micro-CT scanner to image a fossil stylophoran. This outputs a digital 3D picture of the stylophoran fossil that we can look at and analyze on a computer. Next, we developed a program to calculate the joint centers- the point at which one skeletal structure rotates relative to another-within the digitized stylophoran’s aulacophore (Figure 4). This created a digital marionette– a rig of our stylophoran fossil that flexes at the junctures between aulacophore segments as it would have in life. We then rotated each segment at the joint center to calculate the aulacophore’s total range of motion– a reconstruction of how far the aulacophore could flex in each direction (Figure 5).

Figure 4: A look into some of the nuts and bolts of the 3D model we created. Tri-colored axes demarcate where the joint centers are in the proximal aulacophore. 

We used this 3D range of motion model to evaluate several locomotion strategies that had been previously hypothesized for this group of stylophorans. One hypothesis suggested that these stylophorans dug their aulacophores into the substrate– sediment on the ocean floor- to pull themselves forward. Another suggested that they moved the aulacophore side to side in order to push themselves along. We found that the first hypothesis would have been impossible to conduct based on the range of motion we calculated, but the second strategy was theoretically possible! We’ll need to do more work to see how likely it was that stylophorans would have actually used this technique. Nevertheless, through this investigation, our team produced the first objective, data-driven methodology for analyzing locomotion in fossil invertebrates, which is a big step in the right direction for the study of fossil invertebrate biomechanics! Our technique can be applied to study other organisms with rigid skeletons as well, like crabs, insects, or sea stars, for instance, and we’re looking forward to seeing our technique used to uncover more interesting locomotion strategies!

Figure 5: A snapshot of the 3D model where we can observe how dorsal and ventral range of motion compare to the originally preserved orientation of the aulacophore (highlighted in green).

Do you want to know more? You can! We published a paper on this topic here!

Read Full Post »

Today is the 210th anniversary of Charles R. Darwin’s birthday so I put together a quick post. I’d been meaning to blog about some of our latest scientific papers, so I chose those that had an explicit evolutionary theme, which I hope Chuck would like. Here they are, each with a purty picture and a short explainer blurb! Also please check out Anatomy To You’s post by Katrina van Grouw on Darwin’s fancy pigeons.

Stomach-Churning Rating: 1/10 science!

First, Brandon Kilbourne at the Naturkunde Museum in Berlin kindly invited me to assist in a paper from his German fellowship studying mustelid mammals (otters, weasels, wolverines, badgers, etc.; stinky smaller carnivorous mammals). Here we (very much driven by Brandon; I was along for the ride) didn’t just look at how forelimb bone shape changes with body size in this ecologically diverse group. We already knew bigger mustelids would have more robust bones, although it was cool to see how swimming-adapted and digging-adapted mustelids evolved similarly robust bones; whereas climbing ones had the skinniest bones.

The really exciting and novel (yes I am using that much-abused word!) aspect of the paper is that Brandon conjured some sorcery with the latest methods for analysing evolutionary trends, to test how forelimb bone shapes evolved. Was their pattern of evolution mostly a leisurely “random walk” or were there early bursts of shape innovation in the mustelid tree of life, or did shape evolve toward one or more optimal shapes (e.g. suited to ecology/habitat)? We found that the most likely pattern involved multiple rates of evolution and/or optima, rather than a single regime. And it was fascinating to see that the patterns of internal shape change deviated from external shape change such as bone lengths: so perhaps selection sometimes works independently at many levels of bone morphology?

Various evolutionary models applied to the phylogeny of mustelids.

Then there, coincidentally, was another paper originating in part from the same museum group in Berlin. This one I’d been involved in as a co-investigator (author) on a Volkswagen (yes! They like science) grant back about 8 years ago and since. There is an amazing ~290 million year old fossil near-amniote (more terrestrial tetrapod) called Orobates pabsti, preserved with good skeletal material but also sets of footprints that match bones very well, allowing a rare match of the two down to this species level. John Nyakatura’s team had 3D modelled this animal before, so we set out to use digital techniques to test how it did, or did not, move—similar to what I’d tried before with Tyrannosaurus, Ichthyostega and so forth. The main question was whether Orobates moved in a more “ancestral” salamander-like way, a more “derived” lizard-like way (i.e. amniote-ish), or something else.

The approach was like a science sledgehammer: we combined experimental studies of 4 living tetrapods (to approximate “rules” of various sprawling gaits), a digital marionette of Orobates (to assess how well its skeleton stayed articulated in various motions), and two robotics analysis (led by robotics guru Auke Ijspeert and his amazing team): a physical robot version “OroBOT” (as a real-world test of our methods), and a biomechanical simulation of OroBOT (to estimate hard-to-measure things in the other analyses, and matches of motions to footprints). And, best of all, we made it all transparent: you can go play with our interactive website, which I still find very fun to explore, and test what motion patterns do or do not work best for Orobates. We concluded that a more amniote-like set of motions was most plausible, which means such motions might have first evolved outside of amniotes.

OroBOT in tha house!

You may remember Crassigyrinus, the early tetrapod, from a prior post on Anatomy To You. My PhD student Eva Herbst finished her anatomical study of the best fossils we could fit into a microCT-scanner and found some neat new details about the “tadpole from hell”. Buried in the rocky matrix were previously unrecognized bones: vertebrae (pleurocentra; the smaller nubbins of what may be “rhachitomous” bipartite classic tetrapod/omorph structure), ribs (from broad thoracic ones to thin rear ones), pelvic (pubis; lower front), and numerous limb bones. One interesting trait we noticed was that the metatarsals (“sole bones” of the foot) were not symmetrical from left-to-right across each bone, as shown below. Such asymmetry was previously used to infer that some early tetrapods were terrestrial, yet Crassigyrinus was uncontroversially aquatic, so what’s up with that? Maybe this asymmetry is a “hangover” from more terrestrial ancestry, or maybe these bones get asymmetrical for non-terrestrial reasons.

The oddly asymmetrical metatarsals of Crassigyrinus.

Finally, Dr. Peter Bishop finished his PhD at Griffith University in Australia and came to join us as a DAWNDINOS postdoc. He blasted out three of his thesis chapters (starting here) with me and many others as coauthors, all three papers building on a major theme: how does the inner bone structure (spongy or cancellous bone) relate to hindlimb function in theropod dinosaurs (including birds) and how did that evolve? Might it tell us something about how leg posture or even gait evolved? There are big theories in “mechanobiology” variously named Wolff’s Law or the Trajectorial Theory that explain why, at certain levels, bony struts tend to align themselves to help resist certain stresses, and thus their alignment can be “read” to indicate stresses. Sometimes. It’s complicated!

Undaunted, Peter measured a bunch of theropod limb bones’ inner geometry and found consistent differences in how the “tracts” of bony struts, mainly around joints, were oriented. He then built a biomechanical model of a chicken to test if the loads that muscles placed on the joints incurred stresses that matched the tracts’ orientations. Hmm, they did! Then, with renewed confidence that we can use this in the fossil record to infer approximate limb postures, Peter scanned and modelled a less birdlike Daspletosaurus (smaller tyrannosaur) and more birdlike “Troodon” (now Stenonychosaurus; long story). Nicely fitting many other studies’ conclusions, Peter found that the tyrannosaur had a more straightened hindlimb whereas the troodontid had a more crouched hindlimb; intermediate between the tyrannosaur and chicken. Voila! More evidence for a gradual evolution of leg posture across Mesozoic-theropods-into-modern-birds. That’s nice.

Three theropods, three best-supported postures based on cancellous bone architecture.

If you are still thirsty for more papers even if they are less evolutionary, here’s the quick scoop on ones I’ve neglected until now:

(1) Former PhD student Chris Basu published his thesis work w/us on measuring giraffe walking dynamics with force plates, finding that they move mostly like other quadrupeds and their wobbly necks might cost them a little.

(2) Oh, and Chris’s second paper just came out as I was writing this! We measured faster giraffe gaits in the wilds of South Africa, as zoo giraffes couldn’t safely do them. And we found they don’t normally go airborne, just using a rotary gallop (not trot, pace or canter); unlike some other mammals. Stay tuned: next we get evolutionary with this project!

(2) How do you safely anaesthetize a Nile crocodile? There’s now a rigorous protocol (from our DAWNDINOS work).

(3) Kickstarting my broad interest in how animals do “extreme” non-locomotor motions, we simulated how greyhounds stand up, finding that even without stretchy tendons they should, barely, be able to do it, which is neat. Expect much more about this from us in due time.

(4) Let’s simulate some more biomechanics! Ashley Heers, an NSF research fellow w/me for a year, simulated how growing chukar birds use their wing muscles to flap their way up steeper inclines (“WAIR” for devotees), and the results were very encouraging for simulating this behaviour in more detail (e.g. tendons seem to matter a lot) and even in fossil species; and finally…

(5) Hey did you ever think about how bone shape differs between hopping marsupials (macropods) and galloping artiodactyl (even-toed) mammals? We did, in long-the-making work from an old BBSRC grant with Michael Doube et al., and one cool thing is that they mostly don’t change shape with body size that differently, even though one is more bipedal at faster speeds—so maybe it is lower-intensity, slower behaviours that (sometimes?) influence bone shape more?

So there you have the skinny on what we’ve been up to lately, messing around with evolution, biomechanics and morphology.

Read Full Post »

As 2017 approaches its end, there have been a few papers I’ve been involved in that I thought I’d point out here while I have time. Our DAWNDINOS project has been taking up much of that time and you’ll see much more of that project’s work in 2018, but we just published our first paper from it! And since the other two recent papers involve a similar theme of muscles, appendages and computer models of biomechanics, they’ll feature here too.

Stomach-Churning Rating: 0/10; computer models and other abstractions.

Mussaurus patagonicus was an early sauropodomorph dinosaur from Argentina, and is now widely accepted to be a very close relative of the true (giant, quadrupedal) sauropods. Here is John Conway’s great reconstruction of it:

We have been working with Alejandro Otero and Diego Pol on Mussaurus for many years now, starting with Royal Society International Exchange funds and now supported by my ERC grant “DAWNDINOS”. It features in our grant because it is a decent example of a large sauropodomorph that was probably still bipedal and lived near the Triassic-Jurassic transition (~215mya).

In our new study, we applied one of my team’s typical methods, 3D musculoskeletal modelling, to an adult Mussaurus’s forelimbs. This is a change of topic from the hindlimbs that I’ve myopically focused on before with Tyrannosaurus and Velociraptor [in an obscure paper that I should never have published in a book! pdf link], among other critters my team has tackled (mouse, elephant [still to be finished…], ostrich, horse, Ichthyostega… dozens more to come!). But we also modelled the forelimbs of Crocodylus johnstoni (Australian “freshie”) for a key comparison with a living animal whose anatomy we actually knew, rather than reconstructed.

Mussaurus above; Crocodylus below; forelimb models in various views; muscles are red lines.

The methods for this biomechanical modelling are now standard (I learned them from their creator Prof. Scott Delp during my 2001-2003 postdoc at Stanford): scan bones, connect them with joints, add muscle paths around them, and then use the models to estimate joint ranges of motion and muscle moment arms (leverage) around joints. I have some mixed feelings about developing this approach in our 2005 paper that is now widely used by the few teams that study appendicular function in extinct animals. As a recent review paper noted and I’ve always cautioned, it has a lot of assumptions and problems and one must exercise extreme caution in its design and interpretation. Our new Mussaurus paper continues those ruminations, but I think we made some progress, too.

On to the nuts and bolts of the science (it’s a 60 page paper so this summary will omit a lot!): first, we wanted to know how the forelimb joint ranges of motion in Mussaurus compared with those in Crocodylus and whether our model of Mussaurus might be able to be placed in a quadrupedal pose, with the palms at least somewhat flat (“pronated”) on the ground. Even considering missing joint cartilage, this didn’t seem very plausible in Mussaurus unless one allowed the whole forearm to rotate around its long axis from the elbow joint, which is very speculative—but not impossible in Crocodylus, either. Furthermore, the model didn’t seem to have forelimbs fully adapted yet for a more graviportal, columnar posture. Here’s what the model’s mobility was like:

So Mussaurus, like other early sauropodomorphs such as Plateosaurus, probably wasn’t quadrupedal, and thus quadrupedalism must have evolved very close to in the Sauropoda common ancestor.

Second, we compared the muscle moment arms (individual 3D “muscle actions” for short) in different poses for all of the main forelimb muscles that extend (in various ways and extents) from the pectoral girdle to the thumb, for both animals, to see how muscle actions might differ in Crocodylus (which would be closer to the ancestral state) and Mussaurus. Did muscles transform their actions in relation to bipedalism (or reversal to quadrupedalism) in the latter? Well, it’s complicated but there are a lot of similarities and differences in how the muscles might have functioned; probably reflecting evolutionary ancestry and specialization. What I found most surprising about our results was that the forelimbs didn’t have muscles well-positioned to pronate the forearm/hand, and thus musculoskeletal modelling of those muscles reinforced the conclusions from the joints that quadrupedal locomotion was unlikely. I think that result is fairly robust to the uncertainties, but we’ll see in future work.

You like moment arms? We got moment arms! 15 figures of them, like this! And tables and explanatory text and comparisons with human data and, well, lots!

If you’re really a myology geek, you might find our other conclusions about individual muscle actions to be interesting—e.g. the scapulohumeralis seems to have been a shoulder pronator in Crocodylus vs. supinator in Mussaurus, owing to differences in humeral shape (specialization present in Mussaurus; which maybe originated in early dinosaurs?). Contrastingly, the deltoid muscles acted in the same basic way in both species; presumed to reflect evolutionary conservation. And muuuuuuch more!

Do you want to know more? You can play with our models (it takes some work in OpenSim free software but it’s do-able) by downloading them (Crocodylus; Mussaurus; also available: Tyrannosaurus, Velociraptor!). And there will be MUCH more about Mussaurus coming soon. What is awesome about this dinosaur is that we have essentially complete skeletons from tiny hatchlings (the “mouse lizard” etymology) to ~1 year old juveniles to >1000kg adults. So we can do more than arm-wave about forelimbs!

But that’s not all. Last week we published our third paper on mouse hindlimb biomechanics, using musculoskeletal modelling as well. This one was a collaboration that arose from past PhD student James Charles’s thesis: his model has been in much demand from mouse researchers, and in this case we were invited by University of Virginia biomechanical engineers to join them in using this model to test how muscle fibres (the truly muscle-y, contractile parts of “muscle-tendon units”) change length in walking mice vs. humans. It was a pleasure to re-unite in coauthorship with Prof. Silvia Blemker, who was a coauthor on that 2005 T. rex hindlimb modelling paper which set me on my current dark path.

Mouse and human legs in right side view, going through walking cycles in simulations. Too small? Click to embiggen.

We found that, because mice move their hindlimb joints through smaller arcs than humans do during walking and because human muscles have large moment arms, the hindlimb muscles of humans change length more—mouse muscles change length only about 48% of the amount that typical leg muscles do in humans! This is cool not only from an evolutionary (mouse muscles are probably closer to the ancestral mammalian state) and scaling (smaller animals may use less muscle excursions, to a point, in comparable gaits?) perspective, but it also has clinical relevance.

Simulated stride for mouse and human; with muscles either almost inactive (Act=0.05) or fully active (Act=1). Red curve goes through much bigger excursions (along y-axis) than blue curve), so humans should use bigger % of their muscle fibre lengths in walking. Too small? Click to embiggen.

My coauthors study muscular dystrophy and similar diseases that can involve muscle stiffness and similar biomechanical or neural control problems. Mice are often used as “models” (both in the sense of analogues/study systems for animal trials in developing treatments, and in the sense of computational abstractions) for human diseases. But because mouse muscles don’t work the same as human muscles, especially in regards to length changes in walking, there are concerns that overreliance on mice as human models might cause erroneous conclusions about what treatments work best to reduce muscle stiffness (or response to muscle stretching that causes progressive damage), for example. Thus either mouse model studies need some rethinking sometimes, or other models such as canines might be more effective. Regardless, it was exciting to be involved in a study that seems to deliver the goods on translating basic science to clinical relevance.

Muscle-by-muscle data; most mouse muscles go through smaller excursions; a few go through greater; some are the same as humans’.

Finally, a third recent paper of ours was led by Julia Molnar and Stephanie Pierce (of prior RVC “Team Tetrapod” affiliation), with myself and Rui Diogo. This study tied together a bunch of disparate research strands of our different teams, including musculature and its homologies, the early tetrapod fossil record, muscle reconstruction in fossils, and biomechanics. And again the focus was on forelimbs, or front-appendages anyway; but turning back the clock to the very early history of fishes, especially lobe-finned forms, and trying to piece together how the few pectoral fin muscles of those fish evolved into the many forelimb muscles of true tetrapods from >400mya to much more recent times.

Humerus in ventral view, showing muscle attachments. Extent (green) is unknown in the fossil but the muscle position is clear (arrow).

We considered the homologies for those muscles in extant forms, hypothesized by Diogo, Molnar et al., in light of the fossil record that reveals where those muscles attach(ed), using that reciprocal illumination to reconstruct how forelimb musculature evolved. This parallels almost-as-ancient (well, year 2000) work that I’d done in my PhD on reconstructing hindlimb muscle evolution in early reptiles/archosaurs/dinosaurs/birds. Along the way, we could reconstruct estimates of pectoral muscles in various representative extinct tetrapod(omorph)s.

Disparity of skeletal pectoral appendages to work with from lobe-fins to tetrapods.

Again, it’s a lengthy, detailed study (31 pages) but designed as a review and meta-analysis that introduces readers to the data and ideas and then builds on them in new ways. I feel that this was a synthesis that was badly needed to tie together disparate observations and speculations on what the many, many obvious bumps, squiggles, crests and tuberosities on fossil tetrapods/cousins “mean” in terms of soft tissues. The figures here tell the basic story; Julia, as usual, rocked it with some lovely scientific illustration! Short message: the large number of pectoral limb muscles in living tetrapods probably didn’t evolve until limbs with digits evolved, but that number might go back to the common ancestor of all tetrapods, rather than more recently. BUT there are strong hints that earlier tetrapodomorph “fishapods” had some of those novel muscles already, so it was a more stepwise/gradual pattern of evolution than a simple punctuated event or two.

Colour maps of reconstructed right fin/limb muscles in tetrapodomorph sarcopterygian (~”fishapod”) and tetrapod most recent common ancestors. Some are less ambiguous than others.

That study opens the way to do proper biomechanical studies (like the Mussaurus study) of muscle actions, functions… even locomotor dynamics (like the mouse study)– and ooh, I’ve now tied all three studies together, tidily wrapped up with a scientific bow! There you have it. I’m looking forward to sharing more new science in 2018. We have some big, big plans!

Read Full Post »

Short post here– I have 4 jobs now opened on my team, 1 short-term one (~4 months or less) and 3 long-term ones (5 years; negotiable down to 2-3 minimum) as follows:

Stomach-Churning Rating: -10/10 Let’s do some SCIENCE!

  1. Research Technician in Vertebrate Anatomical Imaging; until ~1 December 2016 (some flexibility), on our Leverhulme Trust sesamoid bone grant. Lots of flexibility here and on a super fun, established project! Deadline to apply: 11 August (interviews will be 22 August)
  2. Part-time (50%) Research Administrator, on our ERC dinosaur evolution/locomotion grant until 2021. I’m hunting for someone that’s super organized and enthusiastic and not afraid of paperwork (it is EU funding, after all), but there is sure to be some involvement in science communication, too. Deadline to apply: 11 August  (interviews will be 31 August)
  3. Research Technician in Biomechanics; until 2021 as above. This post will not “just” be technical support but hands-on doing science. Some vital experience in biomechanics will be needed as the research will begin very quickly after starting. If the right person applies, we could agree for them to do a part-time PhD or MRes related to the grant research (but that’s not guaranteed in advance). Deadline to apply: 26 August (interviews will be 7/8 September)
  4. Postdoctoral Researcher in Biomechanics; until 2021 as above. This second postdoc on the project will join Dr. Vivian Allen and the rest of my team to push this project forward! I am keenest on finding someone who is good at biomechanical computer simulation, i.e., has already published on work in that general area. But the right person with XROMM (digital biplanar fluoroscopy), other digital imaging and biomechanics experience might fit. Deadline to apply: 23 August (interviews will be 7/8 September)

Update: all jobs have closed for applications.

Update 2: BUT not all the jobs are 5-year contracts. Some may open up again for new people in the future (but not very soon). Stay tuned…

Note that on the bottom of each page linked above, there are Person Specification and Job Description documents that explain more what the jobs are about and what skills we’re looking for in applicants. I strongly encourage any applicants to read these before applying. If those documents don’t describe you reasonably well, it is probably best not to apply, but you can always contact me if you’re not sure.

The project for jobs 2-4 is about testing the “locomotor superiority hypothesis”, an old idea that dinosaurs gained dominance in the Triassic-Jurassic transition because something about their locomotion was better in some way than other archosaurs’. That idea has been dismissed, embraced, ignored and otherwise considered by various studies over the past 40+ years but never really well tested. So in we go, with a lot of biomechanical and anatomical tools and ideas to try to (indirectly) test it! As usual for projects that I do, there is a healthy mix of empirical (e.g. experiments) and theoretical (e.g. models/simulations) research to be done.

Please spread the word if you know of someone right for any of these roles. I am casting a broad net. The next year (and beyond) is going to be a very exciting time on my team, with this big ~£1.9M ERC Horizon 2020 grant starting and lots of modelling, simulation, experiments, imaging and more. Non-EU/EEA/UK people are very welcome to apply– “Brexit” is not expected to affect this project. If you’re not familiar with my team, check out my “mission statement” for what we stand for professionally and as a team. Join us!

Read Full Post »

I still have my original photocopy, from my grad school days circa 1996, of the 1983 Ted Garland classic paper “The relation between maximal running speed and body mass in terrestrial mammals”, festooned with my comments and highlighter pen marks and other scribblings. That paper remains the backbone of many research questions I am interested in today, and I often think about its underlying concepts. Here’s the key scatterplot from that paper, which I could almost replot by hand from memory, it is so full of implications (and can be clicked to embiggen it, perhaps even speedily depending on your internet connection):

Garland 1983- max speed

Stomach-Churning Rating: 1/10; data and their ramifications; offal-free.

The major points (IMO there are less exciting ones about which theoretical scaling model the data best fit) of the paper are: (1) the fastest-running mammals are neither the smallest nor largest, but those around ~100 kg body mass; (2) if you fit a linear equation to the data (see above; hashed line), it seems like speed increases with body mass linearly (with no limit to that increase, within the body mass range of the data), but if you analyze individual groups of mammals they either don’t change speed significantly with size or they get slower– refer back to point #1 and the polynomial regression that is shown in the figure above (curved line). That’s the biological-question-driven science at the core of the paper (with some methods-y questions at their foundation; e.g. should we use a linear or polynomial regression to fit the data? The latter fits best, and gives a different answer from the former, so it matters.).

But what also fascinates me is the question of data. As the author, who taught me Evolution as an undergrad at U Wisconsin (this had a big impact on me), fully admits in the paper, the ~3-page table of data “necessarily sacrifices some accuracy for completeness”. This paper is about a big question, how mammal speed changes with size, and so its big question explicitly allows for some slop in the data (I will return to this issue of slop later). But given that very few of the data points have very accurate measurements for speed, or for body mass for that matter, how much can we trust an x-y plot of those data, no matter what method is used? Oh there is so much opportunity here for geeky pedantry and niggling scrutiny of data points, true, but hold on…

Plenty of follow-up papers have mused over that latter question, and spin-off ones. Here are some of their plots, re-analyzing the same or very similar data in different contexts. A look at how these papers examine these data and related questions/methods leads into some avenues of science that fascinate me:

Garland 1988- max perf

Garland and Baudinette (link to pdf here) checked whether placental (i.e. most; including us) mammals could run/hop faster than marsupial (pouched; e.g. kangaroos) mammals. Their results said “not really”, as the plot intimates. Scatter in the data, especially between 0.01-10 kg, confounds the issue- there’s a lot of specialization going on (notably, animals that are very slow for their size, e.g. sloths). But marsupials are not, as had been suggested before, inferior to placentals in some basic way such as running ability.

GarlandJanis1993-Fig5

Above, Garland and Janis 1993 (link to pdf here) examined how the ratio of metatarsal (“sole bones” of the lower end of the leg/foot) vs. femur (thigh bone) length relate to speed, with evolutionary relationships taken into account. The methods (“independent contrasts” and its conceptual kin; I won’t delve into that morass more here!) did not exist for looking at phylogeny’s effects on the results in Garland’s 1983 paper. Yet “cursoriality” (relative elongation of the lower limb) had been thought to relate to running speed for over 80 years at that time, so that was what they tested: how much does limb-elongation correlate in a positive way with maximal running speed? They found that the answer was “sort of”, but that other things like home range size, energetics, ecology, etc. might explain as much/more, so caveat emptor. And by looking at the plot above, it’s evident that there’s a lot of specialization (scatter, along the x and/or y axes– check out the giraffe/Giraffa and cheetah/Acinonyx outliers, for example). While ungulates seemed to have a better relationship of speed and limb dimensions, their predatory carnivoran relatives did not.Christiansen 2002- max speed

Christiansen was one of two studies in 2002 that looked back on those Garland 1983 data in a new way, and like the 1993 study with Janis considered these data in light of limb lengths too.  The plot above delved into how running speed changes with lengths of forelimb bones, again finding appreciable curvilinearity (indirectly supporting the non-linear scaling idea– even at large sizes, relatively longer-legged mammals aren’t faster). The plot on the right side (b) measured the relative length of the olecranon process; the “funny bone” that acts as a lever for support of the elbow joint against gravity. Again, even mammals that have stouter elbow-supporting processes aren’t faster; there’s a “happy medium” of elbow-osity for optimizing running speed (and huge scatter in the data!). Ultimately, this analysis concluded that it wasn’t speed that animal anatomy seemed to be optimizing overall, especially as size increased, but rather energetic cost, although there was a lot of variation in the data and accounting for phylogeny only muddled things up more (as it tends to do).

diaz2002

Iriarte-Diaz was the other 2002 study to tackle the speed-vs-size issue. It focused primarily on whether mammal speeds showed “differential” (i.e. non-linear) scaling with size, as per the polynomial regression in Garland’s 1983 study. It showed that smaller mammals seemed to either get slightly slower with increasing size or else not change maximal speed (depending on detailed methods/data stuff that don’t matter here), whereas bigger mammals exhibited very strong declines of speed with size past a threshold (optimal) body mass.

So, repeated analyses of Garland’s 1983 data (and modifications of those data) at least uphold the fundamental conclusion that big land mammals cannot move quickly, in an absolute sense (meters/sec or kph or mph) — and much more so in a relative sense (e.g. body lengths/second or other normalized metrics). We might then ask why, and my research scrutinizes this issue in terms of the fundamental mechanisms of movement biomechanics and anatomy that might help to explain why, but for brevity I won’t go there in this post. I want to wander elsewhere.

I want to wander back to those data used in the above (and other) studies. All of the studies discuss the quality of the data and bemoan the lack of quality. I’d agree with them that it’s hard to imagine most of the data being consistently off in a biased way that would fundamentally alter their conclusions. But I still worry. We should worry about the data points for the extreme animals- the fastest, slowest, largest and smallest. We should worry about subjectively removing “outliers” such as hippos or cheetahs, as they do change some of the results.

I worry about elephants, for example: my work has shown that they can “run” about 7 meters/second or ~25 kph; not the 35 kph used as data for African elephants (from speedometer-y anecdotal estimates)– ~1.4 times the speed we’ve been able to measure for both species. See this old “blog post” (sort of) for more information on the tortuous history of characterizing elephant speeds and gaits. And are a white rhino and hippo able to run at this same 25 kph speed as the original data in the 1983 study state, or faster/slower? No one has really nicely measured this so we can’t be sure, but I can imagine it being off by a similar 40% or so. On the other hand, if the bigger animals in the dataset are slower than the original data, that actually strengthens the conclusion that bigger animals are slower, so who cares that much, in the grand scheme of things?

We could worry about plenty of other maximal speed data points, and the “average” adult body masses assumed (although I doubt those would change the results as much as the speed errors). Maybe another question is, in doing such broad-scale analyses should we only include data points that have maximal precision (e.g. elephants, horses, cheetahs, greyhounds, humans and a few others)? We’d maybe be able to do a study of 20 or so species. I doubt it would show much that is different if we did, although I expect that sample size and noise would begin to dampen out the signal. See below.

However, a double standard begins to become evident here. In modern biomechanics (and probably the rest of biology/science), there’s a strong emphasis on data quality and technologically precise measurement. Garland’s 1983 study might be hard to get past peer review today (or maybe not). We agonize over single-species studies trying hard to measure animals’ maximal speeds (a very hard thing to be sure of in terms of motivation, but not intractable unless one takes an almost antiscientific/overly cynical view that animals could always be holding back some critical reserve unless they run for their lives– is that reserve 1%, 10% or 100%? Probably closer to the middle, in good studies). We measure multiple animals and many trials, in field and/or lab conditions, with documented video footage at high resolution and frame rate, with GPS tracking or other tools to maximize precision. We take pride in these high standards today. That’s what makes scientists wriggle uncomfortably when we look back at the data in those older maximal speed papers and ponder how few data points are verified, documented, precise and essentially trustworthy.

So should broad studies be working by the same standards as narrow studies? (I’m far, far, far from the first scientist to think about this but it’s interesting for me at least to think about it in this case and others) There is potential tension here between empiricists who want precise data and theoreticians who want to tackle those Big Questions, and that’s a pattern one can see throughout much of science. I sit on the fence myself, doing both approaches. I can think of plenty of similar examples, in “big data” palaeobiology, morphometrics, genomics, physics and so on. Some of those fields have nice databases with quality control over the data; they’ve maybe solved this problem to a large degree. This tiny area of mammalian maximal speeds hasn’t solved it, but how urgent is the need to?

On the flip side, even if the data points have some error of 10-20% or even 40% that error will probably be largely random, not biased toward assuming that bigger or smaller animals are slower than they truly are, or medium-sized animals faster. We still have the reliable cheetah data point (and racehorses, and greyhounds) showing >100 kph (and 70 kph) speeds for ~100 (and ~40, 400ish) kg animals, so there is evidence for a peak of maximal speed (the cheetah outlier, and one might also throw in pronghorn antelope or others that are pretty damn fast but not yet well measured) at medium body size. I expect there would be incremental overall progress if we did improve the data quality, and that would still be nice (comforting!) but it would be a tough, tough slog. Indeed, my team is doing its share of that, already tackling the data point for giraffes this year (stay tuned!). The potential gains are still there, especially for understanding the unique biology of individual species– that noise in the data (or specialization, if you prefer) is interesting!!! We need that kind of work, partly because the big questions, sexy as they are, still depend on having data quality as a foundation, and old questions still need revisiting from time to time as data quality is improved by those in the trenches of gathering it.

My team’s journal club has gone over the Garland paper lately and we’re hitting the others later this summer, but I wanted to throw these thoughts out there on this blog now to see if they generated any fun discussion, or they might introduce others to the science of maximal speeds and what we do/don’t know. One thing we don’t know much about is what kinds of patterns non-mammalian groups exhibit today. Chris Clemente did some great work on this with lizards, finding a pattern similar to the mammal one. I’ve struggled in my work to move toward trying to address similar questions for extinct groups, but there the data quality presents a challenge I find exciting rather than depressing, although I still have to shrug when I see limb lengths or proportions being used as a proxy for speed. We can do better.

So I’d love to hear your thoughts on any of the points here. Maybe some of the old-timers have stories from ye olden days when Garland’s work was originally published; I’d love to hear those, or other points/questions/favourite papers.

Read Full Post »

Last year we finally, after about 14 years of slow work, released our biomechanical model of an ostrich’s hindleg. We showed how it informed us about the potential leverages (moment arms; contributions to mechanical advantage of the joints) of all of the muscles. It was a satisfying moment, to understate it, to finally publish this work from my postdoc at Stanford. Today, we begin to deliver on that model’s promise. And it only took 4 years or so, roughly? The journal Royal Society Interface has published our study of how we used this musculoskeletal model to simulate walking and running dynamics. Those simulations join an intimidatingly broad and complex literature using similar models to study human (and some other primate) locomotion or other functions at the level of individual muscles (for whole limbs/bodies) in vast detail and growing rigor. I have Dr. Jeffery Rankin, a research fellow finishing up his post with me after ~6 years of hard work on many projects, to thank for driving this work forward, and Dr. Jonas Rubenson (now at PennState) for his patient collaboration that has continued since the early 2000’s.

Stomach-Churning Rating: 2/10; computer models of muscle actions. The underlying anatomical data are goopy, as prior ostrich-dissection-focused posts show!

Our model; in right side view (on the left) and frontal view (on the right), with muscles in red and the leg's force as the blue arrow; frozen at the middle of a step.

Our model; in right side view (on the left) and frontal view (on the right), with muscles in red and the leg’s force as the blue arrow; frozen at the middle of a running step.

Simulations like these predict things that we can’t easily measure in living animals, such as how much force muscles and tendons generate, how quickly those tissues change length, how much mechanical energy they thus contribute to the joints, limbs and whole body, how much metabolic energy their actions cost, and much more. There are more ways to use these tools than I have space or time to explain, but simply put we forced our ostrich simulation to match experimental measurements of the motions and forces of a representative walking and running ostrich stride, from contact of one foot until the next time that foot hit the ground. It then used optimization methods (minimizing target criteria like muscle stress) to estimate how the muscles and tendons were used to generate those motions and forces. This is a ways ahead of some prior ostrich simulations such as this one that I recall from classes during my PhD studies.

Any modeller worth their salt knows that their models and simulations are wrong at some level. This is much as most science is “wrong”; i.e. a simplification of reality with some errors/noise introduced by assumptions, variation, methods and such. But generally these kinds of musculoskeletal dynamic simulations hold up pretty well against experimental data. A standard “validation” is to test how closely the simulations’ predictions of muscle activity match the “real” (measured in life, also with some uncertain error) activity of muscles. Science still lacks those data for ostriches, but fortunately measurements from other birds (by Steve Gatesy and colleagues) indicate that muscles tend to follow fairly conservative patterns. Grossly speaking, avian leg muscles tend to either be active mainly when the foot is on the ground (stance phase) or off the ground (swing phase). Some studies acknowledge that this is an oversimplification and other muscles do act across those two phases of a stride, either in multiple pulses or as “transitional” (stance-to-swing or swing-to-stance) switch-hitters in their activations. Our ostrich predictions matched the qualitative patterns for avian muscle activations measured to date, so that’s good. The results also reinforced the notion of transitional or multi-phasic muscle activation as still having some importance, which bears more study.

Yet what did the simulations with our ostrich model tell us that other ostrich experiments or other bird species didn’t? Three main things. First, we could calculate what the primary functions of muscles were; they can act as motors (generating energy), brakes (absorbing energy), springs (bouncing energy back and forth) or struts (just transmitting force). We could then sum up what whole muscle groups were doing overall. The image below shows how these broad functions of groups vary across the stance phase (swing phase is harder to condense here so I’ve left it out).

Positive work can speed things up; negative work can slow things down.

Positive work can speed things up; negative work can slow things down. Solid bars are running; striped bars are walking. (from our Fig. 13) You may need to click to em-broaden this image for the gory biomechanical details.

There’s a lot going on there but a few highlights from that plot are that the hip extensor (antigravity) muscles (biarticular hip/knee “hamstrings”) are acting like motors, the knee extensors (like our quadriceps) are mainly braking as in other animals and the ankle is fairly springy as its tendons (e.g. digital flexors; gastrocnemius) suggest. We often characterize birds as “knee-driven” but it’s more accurate biomechanically to say that their hips drive (power; i.e. act as motors) their motion, whereas their knees still act as brakes — in both cases as in many other land vertebrates. Thus in some ways bird legs don’t work so unusually. Birds like ostriches are, though, a little odd in how much they rely on their hamstring muscles to power locomotion (at the hip) rather than their caudofemoral muscles, which are reduced. Zooming in on some particular muscles such as parts of the hip or knee extensors, the functions sometimes weren’t as predictable as their similar anatomy might suggest. Some muscles had parts that turned on during swing phase and other parts used during stance phase. Neural control and mechanics can produce some unexpected patterns.

Second, we looked at one important methodological issue. Simulations of musculoskeletal dynamics can vary from simple static (assuming each instant of a motion is independent from the others; e.g. ignoring acceleration, inertia, tendon effects, etc.) to more complex grades of fully dynamic flavours (e.g. assuming rigid or flexible tendons). We looked across this spectrum of assumptions, for both walking and running gaits, with the expectation that more static assumptions would work less well (vs. more dynamic ones; by various criteria) for running vs. walking. This also showed us how much tendons influence our simulations’ estimates of muscle mechanics—a fully rigid tendon will make the muscle do all of the work (force times length change) whereas a flexible tendon can literally take up some (or even all) of that slack, allowing muscles to remain closer to their isometric (high force-generating, negligible length change) quasi-optimum.

Nicely, our predicted muscle functions weren’t influenced much by these methodological variations. However, static assumptions  clearly were in some ways less appropriate for running than for walking, as were flexible tendons. Somewhat surprisingly, making the simulations more dynamic didn’t lower the levels of activation (and thus presumably the metabolic costs) of muscles, but actually raised those levels. There are good reasons why this might be realistic but it needs further study. It does muddy the waters for the issue of whether assuming that rapid locomotion can be modelled as static is a “bad” thing such as for estimating maximal speeds—yes, tendons can do more (elastic energy storage, etc.) if more dynamic models are used, but co-contraction of antagonistic muscles against each other also brings in some added costs and might lead to slower speed estimates. We’ll see in future work…

Finally, one often overlooked (sometimes even undiscussed!) aspect of these simulations is that they may silently add in extra forces to help muscles that are struggling to support and move their joints. The justification is typically that these extra “reserve actuators” are passive tissues, bony articular forces and other non-muscular interactions. We found that the hip joint muscles of ostriches were very weak at resisting abduction (drawing the thigh away from the body) and this needed resisting during the stance phase, so our simulations had very high reserve actuators switched on there. That fits the anatomy pretty well and needs more investigation.

Want to know more? Happily, not only is the paper free for anyone to view but so are all of the data including the models (modified slightly from our last paper’s). So, although the software (Opensim) isn’t ideal for 4-year-olds to play with (it is fancy engineering stuff), if you have the interest and dilligence it is there to play with and re-use and all that. But also watch this space for future developments, as there is more to happen with our steadily improving models of ostriches and other beasties. Anyway, while this paper is very technical and challenging to explain I am not too bashful to say it’s one of the finer papers from my career; a big stride forward from what we’ve done before. I have been looking forward for a long time to us getting this paper out.

P.S. Our peer reviewers were splendid- tough but constructive and fair. The paper got a lot better thanks to them.

Read Full Post »

My Summer in the SML

Excellent post by a summer research student on my team!

Luke Grinham

I spent this summer, the second of my undergraduate degree, in the Royal Veterinary College’s Structure and Motion Laboratory, as I undertook a BBSRC-funded Summer Research Experience Placement. The purpose of the REP is to give undergrad students a taste of what research would be like as a career. In my case, I was given the fantastic opportunity to study giraffe locomotion. Mentored by Christopher Basu, a PhD student in the SML, and Professor John Hutchinson, my ten-week project began at the start of July.

First things first, I had some ground work to do. All the data had been collected prior to my placement, though I will be joining Chris next week to collect fresh data for his future work. Giraffes were recorded using high speed video cameras walking parallel to the edge of their enclosure, over concealed force-plates measuring ground reaction forces. I was provided with 3 days’…

View original post 650 more words

Read Full Post »

Maybe it’s uncool to talk about heroes in science these days, because everyone is poised on others’ shoulders, but “Neill” (Robert McNeill) Alexander is undeniably a hero to many researchers in biomechanics and other strands of biology. Our lab probably wouldn’t exist without his pervasive influence- he has personally inspired many researchers to dive into biomechanics, and he has raised the profile of this field and championed its importance and principles like no other one individual. Often it feels like we’re just refining answers to questions he already answered. His influence extends not only to comparative biomechanics and not only around his UK home, but also –via his many, many books on biology, anatomy and related areas, in addition to his research, editorial work and public engagement with science– to much of the life sciences worldwide.

What does a kneecap (patella) do? Alexander and Dimery 1985, they knew. My team is still trying to figure that out!

What does a kneecap (patella) do? Alexander and Dimery 1985, they knew. 30 years later, my team is still trying to figure that out!

Sure, one could (and with great humility I’m sure Alexander would) mention others like Galileo and Marey and Muybridge and Fenn and Gray and Manter who came before him and did have a profound impact on the field. Alexander can, regardless, easily be mentioned in the same breath as luminaries of muscle physiology such as AV Hill and even Andrew + Julian Huxley. But I think many would agree that Alexander, despite coming later to the field, had a singular impact on this young field of comparative biomechanics. That impact began in the 1970s, when Dick Taylor and colleagues in comparative physiology were also exploding onto the scene with work at the Concord Field Station at Harvard University, and together biomechanics research there, in the UK, elsewhere in Europe and the world truly hit its stride, with momentum continuing today. I’m trying to think of some women who played a major role in the early history of biomechanics but it was characteristically a woefully male-dominated field. That balance has shifted from the 1970s to today, and my generation would cite luminaries such as Mimi Koehl as key influences. There are many female or non-white-male biomechanics researchers today that are stars in the field, so there seems to have been progress in diversifying this discipline’s population.

Hence, honouring Alexander’s impact on science, today our college gave Neill an honorary doctorate of science (DSc). Last year, I also helped organize a symposium at the Society for Vertebrate Paleontology’s conference in Berlin that honoured his impact specifically on palaeontology, too- compare his book “The Dynamics of Dinosaurs and Other Extinct Giants” to current work and you’ll see what fuelled much of that ongoing work, and how far/not far we’ve come since ~1989. Even 10 years later, his “Principles of Animal Locomotion“, with Biewener’s “Animal Locomotion“, remains one of the best books about our field (locomotion-wise; Vogel’s Comparative Biomechanics more broadly) , and his educational CD “How Animals Move“, if you can get it and make it work on your computer, is uniquely wonderful, with games and videos and tutorials that still would hold up well as compelling introductions to animal biomechanics. Indeed, I’ve counted at least 20 books penned by Alexander, including “Bones: The Unity of Form and Function” (under-appreciated, with gorgeous photos of skeletal morphology!).

1970s Alexander, with a sauropod leg.

1970s Alexander, with a sauropod leg.

And then there are the papers. I have no idea how many papers Neill has written –again and again I come across papers of his that I’ve never seen before. I tried to find out from the Leeds website how many papers he has, but they’re equally dumbfounded. I did manage to count 38 publications in Nature, starting in 1963 with “Frontal Foramina and Tripodes of the Characin Crenuchus,” and 6 in Science. So I think we can be safe in assuming that he has written everything that could be written in biomechanics, and we’re just playing catchup to his unique genius.

Seriously though, Alexander has some awesome publications stemming back over 50 years. I’m a big fan of his early work on land animals, such as with Calow in 1973 on “A mechanical analysis of a hind leg of a frog” and his paper “The mechanics of jumping by a dog” in 1974, which did groundbreaking integrations of quantitative anatomy and biomechanics. These papers kickstarted what today is the study of muscle architecture, which our lab (including my team) has published extensively on, for example. They also pioneered the integration of these anatomical data with simple theoretical models of locomotor mechanics, likewise enabling many researchers like me to ride on Alexander’s coattails. Indeed, while biomechanics often tends to veer into the abstract “assume a spherical horse”, away from anatomy and real organisms, Alexander managed to keep a focus on how anatomy and behaviour are related in whole animals, via biomechanics. As an anatomist as well as a biomechanist, I applaud that.

How do muscles work around joints? Alexander and Dimery 1985 figured out some of the key principles.

How do muscles work around joints? Alexander and Dimery 1985 figured out some of the key principles.

Alexander has researched areas as diverse as how fish swim, how dinosaurs ran, how elastic mechanisms make animal movement more efficient, how to model the form and function of animals (see his book “Optima for Animals” for optimization approaches he disseminated, typifying his elegant style of making complex maths seem simple and simple maths impressively powerful) and how animals walk and run, often as sole author. In these and other areas he has codified fundamental principles that help us understand how much in common many species have due to inescapable biomechanical constraints such as gravity, and how these principles can inspire robotic design or improvements in human/animal care such as prosthetics. Neill has also been a passionate science communicator, advising numerous documentaries on television.

~1990s Alexander, with model dinosaurs used to estimate mass and centre of mass.

~1990s Alexander, with model dinosaurs used to estimate mass and centre of mass.

Alexander’s “Dynamics of Dinosaurs” book, one of my favourites in my whole collection, is remarkably accessible in its communication of complex quantitative methods and data, which arguably has enhanced its impact on palaeontologists. Alexander’s other influences on palaeobiology include highly regarded reviews of jaw/feeding mechanics in fossil vertebrates (influencing the future application of finite element analysis to palaeontology), considerations of digestion and other aspects of metabolism, analysis of vertebral joint mechanics, and much more.  Additionally, he conducted pioneering analyses of allometric (size-related) scaling patterns in extant (and extinct; e.g. the moa) animals that continue to be cited today as valuable datasets with influential conclusions, by a wide array of studies including palaeontology—arguably, he helped compel palaeontologists to contribute more new data on extant animals via studies like these.

Neill Alexander did his MSc and PhD at Cambridge, followed by a DSc at the University of Wales, a Lecturer post at Bangor University and finally settling at the University of Leeds in 1969, where he remained until his retirement in 1999, although he maintains a Visiting Professorship there. I had the great pleasure of visiting him at his home in Leeds in 2014; a memory I will treasure forever, as I had the chance to chat 1-on-1 with him for some hours. He has been Secretary of the Zoological Society of London throughout most of the 1990s, President of the Society for Experimental Biology and International Society of Vertebrate Morphologists, long championing the fertile association of biomechanics with zoology, evolutionary biology and anatomy. More recently, he was a main editor of Proceedings of the Royal Society B for six years.

Many people I’ve spoken to about Neill before have stories of how he asked a single simple question at their talk, poster or peer review stage of publication, and how much that excited them to have attracted his sincere interest in their research. They tend to also speak of how that question cut to the core of their research and gave them a facepalm moment where they thought “why didn’t I think of that?”, but how he also asked that question in a nice way that didn’t disembowel them. I think that those recalling such experiences with Neill would agree that he is a professorial Professor: a model of senior mentorship in terms of how he can advise colleagues in a supportive, constructive and warmly authoritative, scholarly way. For a fairly recent example of his uniquely introspective and concise, see the little treasure “Hopes and Fears for Biomechanics”, a ~2005 lecture you can find here. I really like the “Fears” part. I share those fears- and maybe embody them at times…

My visit with RMcNeill Alexander in 2014.

My visit with RMcNeill Alexander in 2014.

Perhaps I have gushed enough, but I could go on! Professor RMcNeill Alexander, to summarise the prodigious extent of his research, is to biomechanics as Darwin is to biology as a whole. One could make a strong case for him being one of the most influential modern biologists. He is recognised for this by his status as a Fellow of the Royal Society (since 1987), and a CBE award, among many other accolades, accreditations and awards. And, if you’ve met him, you know that he is a gentle, humble, naturally curious and enthusiastic chap who instils a feeling of awe nonetheless, and still loves to talk about science and keeps abreast of developments in the field. And as the RVC is honouring Neill today, it is timely for me to honour him in this blog post. There can never be another giant in biomechanics like Alexander, and we should be thankful for the broad scientific shoulders upon which we are now, as a field, poised.

I hope others will chime in with comments below to share their own stories.

 

 

Read Full Post »