Feeds:
Posts
Comments

Posts Tagged ‘media’

Who needs “Ice Road Truckers” when you have the “John’s Freezer” team on the road with fossils, amphibians, felids and 3D phenotype fun? No one, that’s who. We’re rocking the Cheltenham Science Festival for our first time (as a group), and pulling out all the stops by presenting two events! Here’s the skinny on them, with updates as the week proceeds.

Stomach-Churning Rating: 2/10 for now (just bones), but it could change once the cheetah dissection is under way… 8/10 bloody cheetah bits but only at the end (updated)

Right now, Lauren Sumner-Rooney (of “Anatomy To You” and other fame) is on-site with a rotating team of others from our lab, in the “Free Activity Tents” area of the Imperial Gardens/Square, inside a marquee where we’ll be showing off our NERC-funded tetrapod research all week. This “First Steps” event features not only our past and present work with Jenny Clack, Stephanie Pierce, Julia Molnar and others on Ichthyostega & its “fishapod” mates, but also our “scampering salamanders” research in Spain, Germany and England. I’ve blogged a lot about all that, and won’t repeat it here, but you can see a 3D-printed Ichthyostega skeleton, view the skeleton in a virtual reality 3D environment, see related specimens and engage in kid-friendly activities, and talk to our team about this and other related research.

Ichthyostega 3D printed backbone is born!

Ichthyostega 3D printed backbone is born!

The central themes of that event are how bone structure relates to function and how we can use such information, along with experimental measurements and computer models of real salamanders, to reconstruct how extinct animals might have behaved as well as how swimming animals became walking ones. How did fins transform into limbs and what did that mean for how vertebrates made the evolutionary transition onto land? If you know my team’s work, that encapsulates our general approach to many other problems in evolutionary biomechanics (e.g. how did avian bipedalism evolve?). Added benefits are that you too can explore this theme in a hands-on way, and you can talk with us about it in person. That continues all week (i.e. until Saturday evening); I’ll be around from Thursday afternoon onwards, too. Kids of all ages are welcome!

Ichthyostega 3D print taking shape!

Ichthyostega 3D print taking shape!

Then, on Saturday for our second free event we join forces with Ben Garrod (master of primate evolution, the secrets of bones, and “Attenborough and the Giant Dinosaur”) and RVC’s forensic pathologist Alexander Stoll as well as Sophie Regnault (“sesamoid street” PhD student w/me). As the “Large Animal Dissection” title hints, it’s not the right kind of gig to bring small kids to. There will be blood and stuff— we’ll be dissecting a cheetah together from 10am-4pm. This will involve walking through all the major organ systems, giving evolutionary anecdotes, and plenty more, with an aim to understand how the magnificent adaptations of cheetahs evolved—but also to investigate what problem(s) this animal faced that led to its sad demise. By the day’s end, there will just be a skeleton left. Get a front row seat early for this event, which serendipitously ties into “Team Cat”’s Leverhulme Trust-funded research project (we wanted a big animal and it just happened to be a cheetah; I had hoped for a giant croc or a shark or something but can’t complain!).

Ichthyostega 3D print is ready!

Ichthyostega 3D print is ready!

If you miss these events, please do cry bitter tears of regret. But don’t despair, there will be another “big cat dissection” in the London area in ~November (watch here for details), and plenty more fossil tetrapod stuff to come, plus a LOT more dinosaurs on the horizon!

Guess the bones! (photo by Zoe Self)

Guess the bones! (photo by Zoe Self)

And please come back to this blog post for more pics and stories as the week carries on… For hashtag afficionados, you can follow the fun on Twitter etc. at #firststepsCSF16. What a world we live in!

Update 1: While you’re here, check out our Youtube playlists of tetrapod-related videos:

Lobe-finned fishes

Ichthyostega‘s awesome anatomy

Tetrapod evolution: Tiktaalik to salamanders!

Update 2: Photos of our main stand (about tetrapod evolution)

csf2016-display

Our poster/banner display looks nice.

20160609_143548

Our tent brings in some punters.

20160609_151508

Our bones excite people young and old, sighted and blind.

20160610_090009

Fun with stickers and lab t-shirts.

And…

Update 3: Cheetah meat & greet
Ben, Alex, Sophie and I tackled the cheetah dissection today and it went GREAT! Much better than I’d optimistically expected. Rain didn’t scare the crowds off and neither did the gore, which there was some of (gelatinous spinal cords, lumpy tumors and at least one flying tiny bit of cheetah flesh that landed on a good-natured audience member!). Photos will tell the tale:

20160611_091345

Peek-a-boo!

20160611_093828

Sophie and Alex help us get set up in our tent.

20160611_094554

Our initial rough schedule- although we ended up improvising more after lunch.

20160611_095500

Dissectors assemble!

20160611_105126

The beast revealed. It was skinned by the museum that loaned it to us.

20160611_110748

Alex showing his talent: removing the viscera in one piece from end to end, starting with the tongue.

20160611_153148

Impressive finding of a surgical fixture (plate and wires) on the tibia, which had been used to hold the shattered bone back together long enough for it to heal. Added to the kidney disease and liver-spleen-lung cancer, this cheetah was in the sorriest shape of any cadaver I’ve seen yet.

20160611_153213

Cheetah coming to pieces: (from bottom) lumbar/pelvic region, hindlimb, thorax, forelimb and other bits.

20160611_155452

Dr Adam Rutherford, an eye expert, did a nice dissection of the cheetah’s eye, here showing the tapetum lucidum (reflective membrane), which shows up as light blue colour. Its small size befits the not-very-nocturnal habits of cheetahs.

20160611_155459

The lens of the cheetah’s eye. Now cloudy because of dehydration and crystalization, but still fascinating to see.

Want to see more images and the enthusiastic responses from the audience (we got some great feedback)? Check out Twitter’s #cheltscifest feed, or more simply my Storify condensation of the cheetah-related tweets here.

Read Full Post »

Why

I had a nice chat today (OK, a while ago, when I first started writing this post) with a researcher who wanted to know why I blogged and how I balanced my science communication work with my research activities. In talking with her, I realized that there was a way to explain my views that I hadn’t thought of before and then I realized that this might make a blog post that other people would care to read. So here it is.

Stomach-Churning Rating: 0/10. Just vomiting out words.

I’ll take a historical perspective to answering why I bother doing what I do, and how I came to do it.  As an evolutionary biologist, and as a teacher and communicator, I find that this kind of narrative works for me and for others, in deepening comprehension of why things are the way they are. In my pre-college and college years, I loved to read and write, and I liked science. A professor as a father, a mother who encouraged scholarship and a family that liked to go experience nature together helped. I eventually got competent at writing and maintained that ability (even musing about whether I might become a Hollywood screenwriter– bullet dodged?), whilst figuring out that some sort of biology might be right for my career. Off to college I went.

Amidst the beer-fuelled haze of undergrad life at the U Wisconsin, I fell in love with the science writings of Stephen Jay Gould and some others, which today would be blog posts. A course in the history of science and a lot of courses in biology shaped my interests, and to cut that story short, off to grad school I went in 1995. I’d discovered the internet (on my dad’s iMac) while recovering from some major health problems, and liked it. I learned to love it during my PhD work, participating in a lot of arguing on the Dinosaur email listserver and other kinds of online writing.

In particular, I fell in with the crew of grad students writing pages for the UCMP website— the original online virtual museum. These pages, intended as “virtual exhibits”, were more or less blog posts, or wikipedia-esque entries, or whatever you want to call them in modern parlance. They were reviews of and commentaries on current knowledge on various topics in biology/palaeontology. I now realize that even back then I was an avid science communicator, especially online. I now realize that this hasn’t truly changed in 20 years, except how I do that online communication.

I lacked the self-confidence (or experience) to do much science communication in person, preferring to take the time to slowly write posts/pages online while in hermitage in the museum basement’s computer lab or at our lab’s office computer. Oral presentations utterly terrified me (sometimes to the point of paralysis) until late in grad school once I’d had some practice doing them at seminars and conferences, then I started to love talking about science in person to larger groups (teaching undergrads helped build this love, too). My work began to attract the attention of the media, especially in 2001-2003 during my postdoc at Stanford once my T. rex and elephant biomechanics research got published, and that attention helped train me (through some great mentors’ help) to be better at reaching and engaging with the public via the media.

By 2003 I was a faculty member and my science communication activity continued, even expanding as I became more well-known. Yet my online “scicomm” presence was by this point reduced essentially to only my personal RVC webpages (with several stories about my research that were akin to blog posts) and occasional journalists’ stories about my research. I focused on being a “typical” scientist. That worked for me; I was happy with it.

Finally, in ~2010 I started to catch the online science communication bug again, inspired by bloggers and science writers (and scientists) like Darren Naish (Tetrapod Zoology) and informal chats with colleagues who were experimenting with the newer forms of communication, which were far more engaging than prior forms like the static, non-interactive webpages I’d worked on at the UCMP. And so here I am; see the “Welcome” tab for how this blog originated.

Why then do I continue with this and how to I find whatever balance exists between scicomm and research? First off, I don’t like to think too much about categorizing what I’m doing. It’s all science (writ large) to me, whether I am doing computer analysis or dissections or writing papers or training people or writing blog posts or tweeting. There is a “zero-sum game” that people obsess about in balancing scicomm “versus” research. Yes, it’s true: there are just 24 hours in a day, and to be a successful scientist one must spend some of those hours, on average, on research. Wow. But as long as the research is moving forward at a pace I’m happy with, I don’t care if it took me an average of 6.5 or 8 hours/day to get my part done, or how that time precisely was spent. I don’t think I ever have cared. I don’t do hours-accounting to ensure that I am clocking in and out the “correct” number of hours. I hate that shit and it’s why I didn’t go into a job where I must clock in and out. Lack of freedom suffocates me, and I think that the zero-sum mentality suffocates science.

Similarly, I don’t feel that some vital opportunity is lost by spending time on scicomm rather than research data. I’m sure that, over the years, I’ve “lost” a paper or two that I could have written instead of doing some blogging or other scicomm, but I have enjoyed the latter and others have too, so I feel that it has been more than worth whatever “cost” there has been. If some scientists feel that essentially all they should be doing in science/life is publishing peer-reviewed papers, that’s their opinion but it is not mine. But — I don’t consider that my blog posts are equivalent to peer-reviewed papers by any means, either. I list my blog on my CV as one line, not all of my blog posts like I do for my papers. It is far harder to publish a scientific paper than to write a blog post; there is no equivalency, at present.

Yet on the flip side, blogging is valuable and fills a gap that scientific papers cannot. Once I became a Professor in 2011, I felt even more liberated than when I got tenure. I felt that it was time for me to try new things and take risks, that this was what being a professor was partly about. So I looked around at opportunities and, reflecting on my experiences with documentaries like “Inside Nature’s Giants” and various conversations I’d had in person and on social media (mainly Twitter), I tried blogging. I saw opportunities to engage a broader audience in discussions about anatomy, and I wanted an outlet in which to be creative as a writer and scientist, so blogging fit me. In a blog like this, I can be human, I can talk about myself or others in a personal, less detached and dry way, I can make very speculative statements, I don’t have to reference everything or obsessively avoid any sloppiness, I can be casual, I can be longwinded (like this post), whatever — I can do what the fuck I please, including say “fuck”. I can write posts on anything I want and it doesn’t have to be a novel contribution nor do I have to “sell” it in ways that I might with papers. Try those things in a peer-reviewed publication. Research papers are straight-jacketed by rules because that constrained format has worked for them over the past two centuries. It works for transmitting carefully-checked results that assemble a body of increasingly-trusted knowledge.

I like the release that blogging gives me, to be intellectual in a more creative, explorative, personal, conversational way. This freedom is healthy and rewarding for me, I’ve found, giving me a satisfaction that I can’t get from just grinding away at papers, by engaging with the broader, (potentially) global public rather than just a few specialists — or just a few local people at public science events. Let’s face it, a lot of our peer-reviewed publications don’t matter much; they won’t get cited much and might eventually get forgotten, and even those few specialists that do care about them might not care that much. What matters to me is how I feel about how I am spending my life. I do passionately love discovering new things in my research but science doesn’t start and end there for me. Much like with social media, I’ve benefited from things (some unexpected) like new collaborations, meeting scientists/journalists/science-enthusiasts who become new friends, invitations to do new things like give seminars or take part in bigger media (documentaries, major websites, etc.), being seen as an expert by a broader audience, a stronger and more diverse CV (including positive comments on reviews for funding/other applications), improved writing/communication skills and more. Hence it would be false to say that I lose something by not spending all my time on conventional science. I gain other things from blogging and other scicomm that have their merits, and in the end only one thing matters: does it feel worth it to me? Yes. Do I think that everyone must/should do the same? No. To each their own, but more scientists should consider broadening their scicomm horizons, giving the potential benefits more thought in the weighing of all the priorities that they must juggle. Some people aren’t ready to add scicomm to their repertoire. Some just aren’t suited to it at all. That’s fine. It’s part of the diversity of science. Not everyone can be part of the same conversations and experiences.

To me (like so many in scicomm), whether it is papers or blog posts, it’s all about conversations. These formats of conversations have the same intent: to share and discuss. Indeed, they have much in common, formatting and rules aside. That’s why I like in-person interactions, or seminars and conferences, or social media, or other forms of conversation, too. Each has its pros and cons, and except for social media scientists have been doing them for centuries. One could consider social media/blogging to have been around for 20+ years depending on how one defines it. I’ve realized that I’ve been engaging in conversations over the internet in analogous ways for those decades, and that blogging is not that new for me after all. I see myself as taking a break from the UCMP webpage-writing in by 2001 to returning to public online scicomm in 2010-11, with Facebook acting as a midwife for that transition. Posting science stuff on Facebook to a few hundred friends (ten of whom might show signs of caring) just wasn’t enough for me by ~2011. Since then, I’ve found that the diversity of the world that I can engage with in all these conversations expands my horizons and teaches me new things about science (e.g. other fields I don’t know much about) and about people (e.g. other scientists/science-enthusiasts/journalists I hadn’t met), or even changes the way I look at my own research (e.g. major trends in open access, open data, etc.). This is another major benefit that I wouldn’t get from isolation in an ivory tower. All of these things are echo chambers, whether one is in isolation in the research field of evolutionary biomechanics or the larger area of scicomm that this blog explores, or scicomm on Twitter, or whatever. Mindfulness of that reality can help prevent one’s mind from becoming too full of those echoes and losing sight of the broader world, and I try to be mindful.

I’ve discovered that I like to share, that this is a big part of my personality. I had suppressed some of that side of myself in the early 2000s, developing trust issues that I see in many other scientists today. I imagined things like: if I share, what if someone criticizes me, or I say something wrong and get embarrassed, or someone steals my data/ideas, or someone doesn’t like how I seem to be spending my time, or something else goes wrong. These imagined risks came from stories I’d heard about naughty colleagues and other people, and things I’d experienced myself, some of which were very unpleasant (e.g. colleagues trying to use me, or taking my data or ideas; or people just being jerks). I focused on the negative aspects of sharing but didn’t thoughtfully weigh them against the positive. I now see what I had missed, although things worked out well for me anyway and I don’t deeply have regrets about what I didn’t do prior to 2010-11. I was more selfish, true, and that was strategic selfishness (focus on my research career) as well as irrational selfishness (avoid things that scared me as risky), and there are other things about me back then that I don’t like (e.g. more competitive, less helpful/collegial; which tends to come with secretiveness/lack of sharing) but I don’t beat myself up about them. I could have been much worse, and what matters now is the choices I make now, which I think about much more carefully than I did back then, with the benefit of wisdom gained through successes, failures and mistakes.

Similarly, I don’t like to harangue myself about whether I am doing “work” or “life” stuff. I’m not a fan of this dichotomy. It is an unfair attitude to force upon oneself, in my opinion. “Work vs. life” is set up to impose self-flagellation for doing the wrong thing at the wrong time. I believe in work-life integration, just as I believe in research-scicomm integration in science. I do what I need and want to do when it feels right to do those things. The ultimate goals are what matter most; I want a good life in all facets, including making the lives of those around me good, too. I seek happiness and enjoyment and satisfaction, and do what feels like it will best bring me those things at any moment, depending on how I feel. Sometimes I have energy inside that feels best directed toward writing a blog post. Sometimes I’m more excited about a paper. Or a movie, or a cuddle with cats, or whatever. Generally my #1 job priority (as a senior mentor to numerous people) is to help my team get its work done and published (see my prior posts on managing teams), and whatever other time remains when I feel like working is spent on other things, like my own research or scicomm or whatever. I try to avoid guilt-bludgeoning myself about whether I am working or “living” at 06:00 or 10:45 or on Sunday or Wednesday. But I do bother myself about ensuring I have time with my family and friends, which brings many flavours of happiness and enjoyment and satisfaction that science cannot. I don’t believe in working that much on weekends (but I do dabble sometimes, and I don’t overly guilt-trip myself if I do) and I do want to take time off after 5pm most nights with family, and I do need 7-8 hours of sleep or I’m extra grumpy and low on my science-fu levels. I’m happy with my work-life integration, and it seems to be playing out OK as long as I manage my stress levels and physical fitness.

In summary, to me blogging is part of the balance that I try to seek in life, and that balance is deeply personal, ever-changing, and enjoyable to me. There will never be a right answer to the question of what balance is “right” for any one person, but there is a threshold of contentment that can be reached in seeking that balance, and if one reaches that, then that’s good. There will be people that try to tell you that the balance you seek is wrong, and some of them will be worth listening to but others are best ignored or told to piss off. That doesn’t mean that you won’t have to convince people that your balance is “right” for you, whether it is your family or your peers or grant funding committees. I’m fortunate that experiences in terms of people criticizing my time spent blogging have been minimal for me (I know this is not true for plenty of others!), yet I feel well-prepared to defend my blogging interests if I’d have to.

But concurrently there is a question of trust: shouldn’t those parties evaluating your life-balance be accountable for trusting you to make your own decisions, and questioning whether the standards-of-balance they hold as ideal should apply to you or not? This will always be a source of some tension with some people—and maybe it should be, but it has to be, because we are not all the same people living the same life. Maybe it’s easier “just” to focus on cranking out data and papers and not doing much else in science, much like it might be (or seem) easier “just” to blog 100% of one’s time. Maybe there’s jealousy or insecurity or fear of change that wells up in those that do find a certain, seemingly simple, set of priorities to be the right balance for them in their life, but don’t like to see others seeking a different kind of balance. Keeping more balls in the air in juggling life’s balance ramps up the complexity and that can be more difficult to control; more unstable, even. All of these questions of priorities, trust and balance arise from our humanity and our diversity and present us with frequent choices about how to handle them. I’d like to end this post on a more positive note by suggesting that we celebrate these questions, and by doing so that we celebrate our diversity and humanity and become part of the dynamic kaleidoscope of science and the real world. Maybe we should worry less about judging how others balance their lives; lives whose details we probably know little about; and push ourselves to learn something from our fellow scientists and science enthusiasts by seeking to understand how they’ve arrived at the point in life that they’re at, and seeking to build edifices of trust that there are many ways to contribute to science. We might learn new things that could inspire us to change our own priorities, much as I did in my life journey that led to this blog’s inception. There is a lot of common ground to roam in discussions about balance in the lives of those passionate about science. Curiosity and trust are key components of that ground’s bedrock, like they are of science’s. Discovery and sharing are other parts, in which research and scicomm play important, interactive roles.

I’m curious to hear what others think of things I’ve raised in this post about why I’ve struck the current balance I’ve made in my life (particularly regarding blogging but similarly extensible to social media), and how that relates to the many ways that others can find balance, which might lead to more harmony between research and scicomm in science. Kumbaya?

Read Full Post »

Tonight is the debut of the ballyhooed BBC1 programme “Attenborough and the Giant Dinosaur“, featuring Sir David and The Titanosaur-With-No-Name, at 6:30pm. Furthermore, this week I presided over a showing of “T. rex Autopsy” to our RVC undergrad Zoological Society, with a very enjoyable Q&A afterwards. So it seemed timely for me to do a post about a theme that links these two documentaries that I helped with, my own research, and science communication and palaeontological research more generally. But first let’s get this out of the way:

It was great.

It was great. I could gush more but that’s not what this post is about.

Stomach-Churning Rating: ~7/10; mainly the elephant leg dissection that’s not far below, which is a bit messy.

For the titanosaur documentary with Sir David, and the incomparable Ben Garrod as well, we had an old elephant “friend” of mine (subject of many biomechanics studies we’d done) walk across a pressure pad to demonstrate how the elephant locomotion works and some of the basic similarities with how a giant sauropod dinosaur might walk:

A broader feature of that documentary, which elephants are linked into, is how we can use the skeleton to reconstruct some general aspects of the soft tissue anatomy, and thereby the physiology or even behaviour, of a giant titanosaur. Which brings me to this post’s subject: We dig up dinosaurs all the time, but what about digging into dinosaurs and using what’s preserved to reconstruct what isn’t? 

The "G-suit" compressive stocking that the fascia wrapped around elephant, and other large mammals, creates, and the underlying, interwoven muscles and tendons (hindlimb of a young Asian elephant).

Some of the “G-suit” compressive stocking that the fascia wrapped around elephant, and other large mammals, creates, and the underlying, interwoven muscles and tendons (hindlimb of a young Asian elephant that sadly died in captivity). Did some larger dinosaurs have something like this? I’d expect so.

Another view, more superficially, of that G-suit/stocking under the thick, tight skin of an elephant's leg.

Another view, more superficially, of that G-suit/stocking under the thick, tight skin of an elephant’s leg. You’ll hear more about this in the Attenborough show…

Once the documentary airs, I may be able to share some more images from it showing what they did for the titanosaur, but this BBC photo gives a good idea.

Once the documentary airs, I may be able to share some more images from it showing what they did for the titanosaur, but this BBC photo gives a good idea. Here, blood vessels and other tissues surrounding the skeleton. How would a titanosaur pump blood around its body? A good question.

I’ve covered the science behind these reconstructions before, along with the art (in numerous posts, actually). Here I want to inspect how it’s communicated through the media: what are good (and not so good?) ways to cover it, especially now that displaying raw anatomy is more tolerable on TV and other media? I’m not writing about Thanksgiving dinner dinosaur dissections; not really; or in technical terms how we build a dinosaur to dissect/depict internally (digitally or physically).

I wanted to focus more on the end product; the imagery or even physical object; and how it conveys what we think we know about dinosaur anatomy. I’ll do that via examples, using photos of dinosaur anatomy that I’ve collected over the years from museums or other media. There won’t be any profound points or long musings; it’s mainly a photo blog:

What your (inner?) child most needs is a dinosaur to dissect yourself! Why not a T. rex toy like this?

What your (inner?) child most needs is a dinosaur to dissect yourself! Why not a T. rex toy like this?

I could quibble, but for the price they did a good job.

For the price (~$30 in USA), the 4D Vision dinosaurs deliver a pretty good bargain, and the anatomy is satisfactory. I’ve been collecting this series. I could quibble, but hey: it’s a dinosaur you get to build/dissect yourself, and with many major organs in reasonable positions! Not so easy to put/keep together, but it’s fine. I would not pay a ton for it, though.

Poster of Velociraptor's anatomy I've had since grad school, adorning my office. For ~1996, it's damn good, mostly... (placeholder photos until I get to the office tomorrow and take better ones!)

Poster of Velociraptor’s anatomy I’ve had since grad school, adorning my office. For ~1996 (no feathers; “zombie hands“), it’s damn good, mostly… Closer views below (sorry, photo quality is crap– taking photos of wall poster turned out to be harder than I expected! Bad lighting.) :

Closeup of the leg muscles- hey, not bad!

Closeup of the leg muscles- hey, not bad! Pretty much the right muscles in the right places more or less, and plausible proportions. No air sacs in the torso, but again, this is mid-1990’s science shown. BUT…

I was happy with this poster until I got it home and read this final bit of text... Oh, America! You silly place.

I was happy with this poster until I got it home from the western-USA museum I bought it at and read this final bit of text… Oh, America! You silly place. (And unfortunately, these dinosaurs are not from the very end of the Cretaceous anyway, so “global catastrophe” is not implicated.)

Ornithomimid in Barcelona natural history museum. This was unexpected and got me excited when I first saw it.

Ornithomimid in Barcelona natural history museum. This was unexpected and got me excited when I first saw it.

Looking down onto the opened torso of the Barcelona ornithomimid. Strikingly realistic!

Looking down onto the opened torso of the Barcelona ornithomimid. Strikingly realistic! Breastbone, heart, liver, intestines; not unreasonable positions and sizes. No feathers, but again hey– this was made in the earlier days.

Skinned Albertosaurus from the Drexel Academy of Sciences. I forget where I got this pic but I like the display.

Albertosaurus from the Drexel Academy of Sciences. I forget where I got this pic but I like the display– this is an impressive full-scale physical model. The transition from skeleton-only on the left to skinned in the middle to fully-fleshed and popping out atcha on the right is clever.

?T. rex? leg, photo that I took ages ago as a PhD student, if memory serves. Can anyone remind me where this was? California Academy of Sciences?

?T. rex? leg, photo that I took ages ago as a PhD student, if memory serves. Can anyone remind me where this was? California Academy of Sciences? I am embarrassed that I cannot recall. I remember geeking out about it. It has a toy-ish look, but I reckon they had to build this to withstand kids touching it.

Perhaps the best example I've seen in a museum: the AMNH's sauropod with internal organs and their functions projected onto it. Bravo!

Perhaps the best dino-dissection example I’ve seen in a museum: the AMNH’s sauropod Mamenchisaurus with internal organs and their functions projected onto it, in the “World’s Largest Dinosaurs” exhibit. Bravo! I stood and watched it for quite a while.

This is far from comprehensive– just several kinds of imagery that I mostly like. There’s the tension between showing too much realism, which science simply can’t back up, and being too cartoonish, losing the viewer’s immersion in the time-travelling fantasy. I do, however, like other kinds of more abstract, schematic depictions of dinosaur anatomy that simplify the details to focus on the basics of what organs should have been where and how they may have worked, such as this depiction from T. rex Autopsy, which also took the other extreme favouring ultra-realism (but with physical models, not so much with the CGI):

AIr flow through a T. rex: simplified but clear.

Air flow through a T. rex: simplified but clear. CGI used to explain, not abused. The real air sac anatomy would be too complex to show. You may see something similar with the titanosaur show.

That’s enough for now. I’ve stuck with relatively recent examples; of course in my particular field I also think back to Romer’s wonderful 1920’s drawings, which I covered in this post.

So, blog readers, help me out here: what examples of dinosaur internal, squishy anatomy from museums, documentaries or other not-entirely-done-by-nitpicky-scientists venues do you like, or not like so much? What works for you, or at least is memorable in some way?

Read Full Post »

I think a lot about where my ideas come from as a researcher and what a “new” idea really is, in addition to the “value” (in any sense) of scientific ideas. As a senior researcher, I find more and more that such evaluations of the merits of ideas are a huge part of my job. And I hear my colleagues talking about similar things all the time. Variably, the reflections and discussions boil down to something like these (falling somewhere in the multi-dimensional space illustrated by two extremes below):

  1. “Study by so-and-so claims that it shows something novel but it’s not; such-and-such said/showed that in year XXXX”, or
  2. “I came up with the idea for the paper/grant and that is the most important thing”.

The above extremes, and perhaps all points in between, could always be debatable. There is no across-the-board, seemingly profound statement that can encompass all possibilities, like the ironically trite “There’s nothing new under the sun”, or vast oversimplification “Ideas are easy to come by; data are hard.”

What is a new idea and what is one worth? Well, yes, that varies in science. I think it’s helpful to dissect these issues separately- the origin and evolution of ideas, and then their currency in science. And so here I will do that. These are not new ideas– even for me; I’ve been sitting on this post since 18 October 2015, waiting for the ideas to coalesce enough to post this!

Stomach-Churning Rating: 1/10; ruminations, some of which may be blindingly obvious. No images; just a long read.

It’s safe to say, and I know a lot has been written about this in the history and philosophy of science, that almost all “new” ideas in science are incremental. They tend to be little steps forward; not Kuhn-ian revolutions that blindside the community. Fans of Darwin and other science heroes are constantly reminded that even the geniuses’ ideas emerged mostly from the tangled skein of scientific society; coalescing from particles suspended in the scientific group-think. That doesn’t devalue science, as science is still making big strides– by (increasingly?) small, frequent steps across the scholastic landscape (see below).

It’s easy to take a shortcut and say, for example, that evolution was Charles Darwin’s big idea (or give him the lion’s share of credit) when of course that is a huge oversimplification and highly misleading– historical evidence shows beyond question that evolutionary ideas had been bounced around for decades (or centuries) and that Darwin had come across plenty of them, his grandfather Erasmus’s Zoonomia being an obvious one out of many influences. I was recently teaching my main undergrad class about this very topic and it got me thinking more about how, on the more standard scale of us non-genius scientists, ideas always have many common ancestors and lateral transfer of heritable material (to abuse the evolutionary metaphor). Saltationism/macromutation of ideas is rare, hence precious when it truly does happen. But hybridization (multidisciplinary syntheses; integrative science; all the rage these days– usually for good reasons) is a powerful force, probably today more than ever in science, able to generate and tackle big ideas.

It’s just as easy to default to the breathless “Wow, everything is new!” shortcut. The 24-hour news cycle takes a regular tongue-lashing from scientists and other science communicators from taking this shortcut too often. We might more reflexively forgive that cycle in the breath after cursing it, because memories and attention spans are short, hectic lives are only a bit longer, and thus in the latest science news story the headline or ~500-word article can’t regale us with the entire, nuanced history of a subject *and* explain within those tight constraints what incremental advance has been made, with due credit to all antecedents. Would we prefer less science news coverage overall, to save that breathlessness for the rare occasion when it is truly deserved? Or just more boring, toned-down, long-winded coverage (cough, this post, cough?) that attracts less interest in science overall? I’d be wary of such arguments.

Scientific journal articles, too, are becoming more complex because of the increasingly specialized, technical nature of many fields that have benefited from prior scientific advances. Online journal formats are helping to loosen the noose of word limits on those articles. But good mentors (and reviewers, and editors) remind young (and all other) scientists that overly long papers will raise the risk of fewer people reading them or spotting key phrases buried in them. “Moderation in all things.” Usually. “Exceptions to all things”, too, I admit– sometimes long papers are great!

Furthermore, much as journalists can’t cover, or be familiar with, the whole history of a field, so it is becoming harder even for specialists to follow scientific progress within a specialized field. Open access to literature and online papers or emailed pdfs are helping, with even many very old classic papers becoming digitized. Yet then while you’re reading through some of the old literature you’d missed, and doing teaching and research and admin and other tasks that life as a scientist demands of you, new papers are popping up. You see some of them, and others get missed because there are too many papers getting published to follow them all, and because there are so many journals (many of the online ones being very generalist, so a paper on a given topic could appear anywhere), and even the best literature-searching tools don’t find everything. Patience, to a degree, in tolerating missed references is thus important, although it can help to point them out diplomatically.

I find it exasperating trying to keep up with the fields I work in. Seriously, I frequently look at my folders of papers “to read” and I think “*@$*! I’ll never read all that now!” Ten years ago it was different. I felt like I could, and I think I mostly did, keep up with my interests. Furthermore, I care about reading others’ research. I love reading science and I feel proud to keep up with a topic, knowing that I’m doing my scholastic duty. I want to learn what others have learned, both in the far past and far-flung countries and in the recent cutting-edge studies. I have gotten where I am from doing that– the literature routinely inspires me to take new directions in research and many of my best papers/grants/projects have come directly from that inspiration. I worry that I am missing opportunities for new ideas by not reading all of the old ones. But no one can do everything.

Aha! I have reached one of my points! The literature is there to show us the way; show us where the knowns and unknowns are in science. The peaks of knowledge where science has climbed to new heights of understanding! The valleys of ignorance where a bit of research effort or luck might get you far in making “new” discoveries! Or you can slog it on the slopes and try to conquer the peaks on that scholastic landscape (Sewall Wright fans, take note); show that your disciplinary Mt. Everest is taller than anyone thought it was. We all have our favoured routes as researchers. The point is to discover something “new” to science. It is all new, if it is worth doing, as a scientific researcher. And maybe 99.99% of that newness ascends from base-camps on older, lower landscapes.

But there is new (tiny steps), and then there is NEW (quantum leaps), and we must be wary of that’s-not-even-new-at-all (previously charted territory, or even plagiarism). The aspect of “new”-ness here that interests me is the subjective judgement we make in assessing that originality. As an example from my own research in vertebrate palaeontology, I’ve published around 12 papers that orbit the topic of whether a big theropod dinosaur such as Tyrannosaurus rex could run quickly if at all. This all began with my 2002 paper in Nature, which at the time was a “new” application in palaeontology of methods that were well over 30 years old then (inverse dynamics analysis of musculoskeletal mechanics), and owed a lot to simpler approaches by RMcNeill Alexander and others, but probably was published (and gained me some notoriety/infamy) because it answered a tough question in a clever, basic and reproducible way.

My (and coauthors’) papers in 2004, 2005, 2007 and onwards fleshed out this topic more and showed some of the nuances overlooked in that 2002 study. They were all “new”, even though that question “Was T. rex a fast runner?” was gradually beaten to death by them to the point where even I am tired of it now, although I can still see areas where I’m not satisfied with my own answers. I guess the 2002 paper was NEW in its own moderate way and the later papers, even though some of them were much fancier (e.g. using 3D imaging and cutting edge computer modelling; not just simple equations and sketches), were incrementally new in terms of the answers they gave, even if methodologically NEW-ish. We could debate the finer details of the “new-ness” there until the heat death of the universe, but I doubt it would be of more than of very niche (read: tediously nerdy and semantic/subjective) interest. Debating whether something is new or not quickly gets boring. It’s a dull criticism to level at a new study, because most studies (at least in my field) are conducted and published for a good reason and probably are new in some way; the ways they are not new are far less interesting. It’s maybe even harder to accurately delineate the “new-ness” of a study than it is to berate it for its old-ness; the latter is the knee-jerk retort too often on social media, perhaps, and easily fuelled by scientific self esteem issues.

Returning to point 1 above, then, sure. That study in year XXXX by so-and-so probably does have some relationship to the latest studies in a related field. And it behooves us as scholars to be aware of those homologies and homoplasies that are the history of any scientific discipline’s intellectual evolution. But giving the authors or the news media a tongue-lashing for talking about (incrementally) new research probably is more often wasted breath than otherwise; boiling down to debate over which hairs have been split and by whom and when. There are plenty of cases of excessive spin and hype, my personal punching-bag being the humdrum T. rex “scavenger” nonsense, but I usually find it more rewarding to look for the value in scientific ideas and data than excoriate the excesses of how they are presented to the public.

What’s more interesting, to me, is how weaving together old research to allow new ascents up scholastic landscapes moves science forward, sometimes in surprising ways. Old research provides data and ideas that are ancestors of new ideas and eventually new data. Indeed, this reticulating phylogeny of data and ideas muddies the waters between “data” and “ideas” in some cases. We need both, and different researchers fall into different positions along a spectrum. I see some scientists who take an “r selection” approach to ideas, throwing them out in a shotgun approach (sometimes with little or no peer review to control their quality) and hoping that some stick, adhering to supportive data. In contrast, other scientists fall closer to the “K selection” extreme, slowly nuturing ideas with cautious care, focusing on building up mountains of rigorous data to test those ideas with, until together they are ready to leave the academic nest and be published.

The integration of data and ideas from old research plays a variable role in that evolution of data and ideas– some of those scientists (falling on any point along that r-K spectrum) rely more on careful reading of past scientific literature to give their work firm historical footing and inspiration, whereas others mostly pluck a few references that they need to cite once they write up their work, not so keen on spending their time keeping up with the literature and thus focusing more on their own internal thought processes or other sources of inspiration. Different strokes for different folks…

What I’d like to close with, as a roughly second point of this post, is to question the inherent value of scientific ideas. I emphasize that I am unable to provide any easy answers here. What is the value of a good idea that needs testing by some kind of data? The source of inspiration may be immaterial to that evaluation; where one got one’s ideas may not matter here, it’s more about the value of the idea at hand– be it a hypothesis, a general question, a “what’s up with that?” (my personal favourite kind of research question); whatever.

For example, I can think of many cases in my career where a certain paper or grant owed hugely to an idea I had; without that idea, which wasn’t initially obvious, we’d still be stuck at some lower scientific base-camp, and big papers or grants or whatever would not have happened, and careers might not have blossomed the way they did (who knows!). My job as a senior researcher is often to “give away” ideas to those I mentor and collaborate with, and I love doing that. It’s seldom one-sided, with me playing the parthenogenetic parent and that’s it; normally these processes are intensely collaborative and thus multiparental hybrids. But I can usually trace back where the lineages of ideas came from and weigh their merits accordingly, and sometimes as scientists we have to do that.

However, it’s not just about ideas, either– a great scientific idea can be wonderfully valuable, but until it is tested its value might only be speculated upon. It takes the infamously time-consuming and technically challenging procedure of scientific  data collection and analysis to test most ideas, and different collaborators may play lesser or greater roles in that process vs. the ancestral idea-generating process(es). Along the way, we must think of ideas for how to test the main idea itself: what methods might work, what has or hasn’t been tried before to tackle similar problems, and is the method we’ve chosen even working as the scientific work proceeds or must we switch approaches? That gets messy; ideas and data begin to become entangled, and contributions of individuals intermingled, but that’s how science works.

This leads to the flip side of the value of scientific ideas, that in many cases they aren’t worth that much— they may be dead-ends for one reason or another: just foolish ideas; or untestable with current tools/data; or so obvious that anyone could have come up with them; or boring and not really worth trying to test. I’ve found it common to publish a paper and then hear, at some point before or after publication, another researcher say (in reference to some major or minor aspect of the paper) something like “Hey I mentioned that idea in this paper/book/blog post!” More often than not, I don’t want to say it in retort but my reaction is “Well, duh. It’s a pretty obvious idea”, and/or “That’s great, but you didn’t test it; that’s the hard bit”. Cheap ideas by definition aren’t worth much fuss. To abuse Shakespeare, “The science is the thing; wherein we’ll catch which idea in science is king.” (sorry!)

A common example I run across that falls within this theme of cheap ideas is to encounter a colleague (e.g. a new student, maybe one with lax supervision) who describes their new research project in which they apply some sort of fancy technique like computer modelling/simulation to an animal, such as a nice dinosaur fossil, doing what some previous study/studies had done with other species but applied to a new species. Uncomfortably often, when asked their justification for applying that method to that animal is because they can, and because they happen to have that animal accessible, rather than because there is an urgent, exciting question that must be answered for which that method and specimen are ideally suited to testing. It’s not worthless, but… more emphasis on the value of ideas and less on climbing Mt. Everest because it’s there might have been rewarding?

Returning to the main thrust of this post conveyed by the title, then, it’s not easy evaluating what the value of an idea is in science, but it’s something that we all have to learn to do as researchers, and it can bring out the best and worst of our humanity as scientists; perhaps leading to conflict; or it can even just end up with an unsatisfyingly muddled answer. So tread carefully on that scholastic landscape, and think about how you choose your way across it– there are many routes, but I think we can generally agree that the prize of discovery (whether incrementally small or uncommonly large) is a big part of why we dare the journey.

I’d love to hear your thoughts, your stories, and other insights here– it’s a very broad topic and lots of room for discussion!

Read Full Post »

I was recently featured on Daily Planet, a great Canadian science show on TV that lamentably is not broadcast more globally. It is always high quality science communication, aided by the superb hosts Ziya Tong and Dan Riskin (and a talented crew!). What were we doing? Dissecting an elephant’s foot, of course!

Stomach-Churning Rating: 9/10; no-holds-barred dismantling of elephant feet, from the video onwards, and this post is heavy on moist, goopy photos afterwards, with some nasty pathologies. Not nice at all. I’ll give you a chance to turn around while contemplating the cart that we use to carry elephant feet around campus (each foot is 20-30kg; up to 70lbs; so we need the help!), before the video.

no_poo

Here is a snippet of the full segment from Daily Planet:

And here is more of some of my recent dissections. I’ll walk you through two dissections, via photos. This goes back to the roots of this blog: unflinching, gritty examinations of real anatomy! Of course, no elephants were harmed for this work. They died at EU zoos/parks and were sent to me for postmortem examination and research, so we hope that this benefits the future care of elephants. We’re currently finishing up a grand overview paper that describes all of the odd pathologies we’ve observed in elephant feet, for the benefit of zoo keepers and vets who are trying to detect, diagnose and monitor any foot problems.

As the post’s title alludes, elephant feet (and more proximal parts of the limbs) are no stranger to this blog. If you’ve forgotten or are unfamiliar, here are some of my past proboscidean-posts: on elephant foot pathologies (a close sister post to this one), our “six-toed” elephants paper, how to make a computer simulation of an elephant’s limb (umm, paper yet to come!), how we boil and bleach bones to clean them up, and a few others. Last but not least, there was the post that went viral in the early #JohnsFreezer/WIJF days: dissecting an elephant with the “Inside Nature’s Giants” show.

There are two feet in this post, both front right feet (manus is the technical term; singular and plural). The first one is the messier (unhealthy and bloodier, less fresh and clean) one, from the show/video. It is an Asian elephant (Elephas maximus). I kick off with photos I took after the filming, so the foot is already deconstructed:

Skinned foot, oblique front/inside view.

Skinned foot, oblique front/inside view. The wrist is on the right side of the photo; the toes on the left.

Sole ("slipper"), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out.

Sole (“slipper”), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out. The slipper here is upside-down.

Top-down view of the sole of the foot, once the slipper is removed.

Top-down view of the sole of the foot, once the slipper is removed; flipped over and rotated 90 degrees clockwise from the above photo. Some of the fat pad of the foot is on the right side of the image; it’s very hard to separate from the keratinous sole of the foot.

Looking down into the fourth toe's abscess on the other side of the above view.

Looking down into the fourth toe’s (ring finger) abscess on the other side of the above view.

Looking down into the third (middle) toe, same view as above. Some redness and greyness where this toe had some of its own pathological issues.

Looking down into the second toe (index finger), same view as above. Some redness and greyness where this toe had some of its own pathological issues like infection and a smaller abscess.

Looking up from the slipper at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot).

Looking up from the slipper (removed) at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot). The very bad infection on the fourth toe is visible on the bottom right.

The sproingy fat pad is worth a video!

And one good wiggle deserves another!

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the "hand" are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant's foot.

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the “hand” are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant’s foot. As you will see in my dissection of the second foot, further below!

Looking down onto the medial (inner/"thumb") border of the foot, where I've exposed the prepollex, or false "sixth finger" by removing the first metacarpal (knuckle) bone.

Looking down onto the medial (inner/”thumb”) border of the foot, where I’ve exposed the prepollex, or false “sixth finger”, by removing the first metacarpal (knuckle) bone.

Removed the prepollex from the foot. The white oval structure is the top of the prepollex; white is cartilage, whereas the red "islands" are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone.

I’ve removed the prepollex from the foot. The white oval structure (bottom right) is the top of the conical prepollex, where it connected to the rest of the foot. White is cartilage, whereas the red “islands” are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone. The fleshy pink tissue adhering to the surface of the prepollex here is a remnant of “abductor” muscle that connects it to the thumb and thus could allow some active control of the prepollex’s mobility.

Well, that was one very pathological elephant’s foot; one of the worst I have ever seen. Every foot I dissect is different and tells me a unique story about that animal’s development, history and health. This one told a very sad tale. What does a somewhat normal elephant’s foot look like? I thawed one out for comparison, and to thin out my overstuffed freezer stock. This one starts off from an intact (if severed) foot so you can witness the stages of dissection:

Whole foot. African elephant (Loxodonta africana).

Whole foot. African elephant (Loxodonta africana). You may spot in later photos that the second and fourth toes’ nails are cracked longitudinally. This happens sometimes in elephants without any obvious health problems such as infection, but if it lasts long enough and conditions are bad enough (e.g. unsanitary conditions getting bacteria into the crack; spreading the crack to let them into the foot tissue), it could worsen.

Nice clean sole.

Nice clean sole. No abscesses or other problems. You can faintly see the cracked toenails here.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Removing the skin; nice soft whitish connective tissue underneath.

Removing the skin; nice soft whitish connective tissue underneath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot's surface, running to the toes.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot’s surface, running to the toes.

Ahh, my favourite thing! I've cut around the prepollex and am pointing at it. It's almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Ahh, my favourite thing! I’ve cut around the prepollex and am pointing at it. It’s almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Removing the prepollex. It's tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

Removing the prepollex. It’s tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These "sesamoid bones" vary tremendously in elephants I've inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These “sesamoid bones” vary tremendously in elephants I’ve inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That's what elephants have.

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That’s what elephants have.

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Skinned foot, oblique front/inside view again, as above.

Skinned foot, oblique front/inside view again, as above.

Fat pad removed, looking up through where it was at the palm of the "hands", where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the "thumb" (first toe) is on the upper left.

Fat pad removed, looking up through where it was at the palm of the “hands”, where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the “thumb” (first toe) is on the upper left.

Elephant's-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life.

Elephant’s-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life (i.e. the limb would be coming down vertically, perpendicular to the plane of the image). The fat pad of the foot is visibly thicker toward the back of the foot (bottom of the image), as you’d expect, because the toes occupy most of the front parts.

Palmar tendons and muscles; the common digital extensor muscle group. Clenches the toes. Not a small muscle, either!

Palmar tendons and muscles; the common digital extensor muscle group, which clenches the toes. Not a small muscle, either!

Tendons of the digital flexor muscle exposed.

Tendons of the digital flexor muscle exposed.

Removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

I removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we've done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we’ve done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Let’s finish off with some osteology, shall we? First the unhealthy Asian elephant, then the healthy African elephant; same front right feet, just the bones (from my CT scans):

Ouch, indeed!

Much better. And that’s the end!

Wow, that was an elephantine post! I wanted to take yet another opportunity to share the amazing anatomy of elephant feet with you. You’re all now qualified experts if you made it this far!

Any questions?

Read Full Post »

Goat morphology is cool! (from work with local artist)

I posted the above photo once before, but didn’t explain any of the fun details of artist-designer Thomas Thwaites‘s visit to the RVC to dissect a goat with us. Now his show has just finished in London, celebrating the end of his project and the near-completion of his book about his experience trying to live life as a goat. This week, I went to his east side gallery and had some time to chat with Thomas about his transhuman experiences. Because the project has a strong biomechanics, anatomy, art and science theme to it, I’m posting a photo-blog post about all of that. It’s goat to be seen to be believed! I for one wouldn’t mind being a goat right now; I could use a break from my decrepit body…

Stomach-Churning Rating: Too late, there’s the goat pic above and more like it below. I’d give those a 8/10; no kidding. The puns make it worse, too.

The context

The context. Thomas never did get to gallop (sorry, spoiler!) but he did manage a trot, and some other capricious behaviours. I forgot to ask him if he’d tried the Goat Simulator. I have; it’s good for an hour of fun hircosity.

Starting the dissection at the RVC.

Starting the dissection at the RVC, to get inside a goat.

Hide.

Hide.

Fore- and hindlimbs.

Fore- and hindlimbs; comparative design for inspiring prosthetics.

Dissections!

Dissections on display!

Prototype goat-suits. Their mobility was too limited.

Prototype goat-suits. Their mobility was too limited.

The prototype in the foreground could not move without falling down.

The prototype in the foreground could not move without falling down.

Goat-suit shots.

Inhabited-goat-suit shots.

The Goat-Suit: custom made prothetics, a helmet, and some form-fitting casts.

The final Goat-Suit: custom prosthetics, a helmet, and some form-fitting casts.

Thomas Thwaites with the goat-suit.

Thomas Thwaites with the goat-suit.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms. It was made by a prosthetics clinic up in Salford.

Showroom

Photos from rambling around the Swiss Alps in the goat-suit with goats.

Trip-trap-trip-trap...

Trip-trap-trip-trap… (but no trolls)

Goat-suit in action!

Goat-suit in action! With Goat-Pro camera, I see.

Acceptance?

Acceptance?

And the goat that we had dissected, skeletonized at RVC and re-articulated by Thomas:

Do goats wish they were human?

Do goats wish they were human?

What are you looking at?

What are you looking at?

Close-up of goat head.

Close-up of goat head and shoulders.

Goat hooves-on-hips

Goat hooves-on-hips; a gruff pose.

So like us.

So like us.

Read Full Post »

Well, that was an eventful week for me, although today’s post will focus on one event: the debut of the film Jurassic World. Briefly though, the awesome “T. rex Autopsy” documentary debuted (I was going to post more about it but all I’d have left to say is that I was very pleased with the result), I also showed up briefly in “Top 10 Biggest Beasts Ever” talking about the giant rhinocerotoid Paraceratherium and the stresses on its feet, our paper on ostrich musculoskeletal modelling was published (more in a future post) after ~12 years of me diddling around with it, and much more happened. Then to cap it all off, very shortly after I hit the “publish” button on my last post, I had four tonic clonic seizures in a row and spent a hazy night in the hospital, then the past week recovering from the damage. Nothing like another near-death (no exaggeration there, I’m afraid) experience to cap off an exciting week. But strangely, what I feel more interested in talking about is, like I said, Jurassic World, but this is not a review, as you will see here.

Stomach-Churning Rating: 0/10; just SPOILERS if you haven’t seen the film yet!

I guess I have to give a brief review of the film and say that I was entertained, to a degree, but it was not a great piece of film-making. It was a far cry from the original but then so were the sequels, and maybe it was better than them. The mosa-star was the most novel, memorable bit. I didn’t care for the Indominus villain, but then when you bring genetic engineering into a film like this, you’ve basically thrown out the rulebook and can make your dinosaurs as magical as you want; we’re already in “X-Men” territory here and almost in “Pacific Rim”-land.

Chris Pratt has signed on for at least another sequel to Jurassic World and the ending of the film already started that ball rolling. So I find it fun to speculate wildly, and certainly incorrectly, on what the sequel might do. What does the Jurassic future have in store?

First of all, who survived to re-appear in the next film? We’re left with the Bryce Dallas Howard character, who probably will return with Pratt to further develop their rather uninteresting social/romantic dynamic, rather than start afresh with someone else. The kids of course survived, as always, and as always they won’t return, as that’s not interesting and they didn’t have much to do except scream and (highly implausibly) hotwire an old car. Much as I’d like the parents from my hometown of Madison, WI to return, they won’t either for the same reasons. But we really only need Pratt and his high-heeled sweetie for the next film. Everyone else memorable(?) seems to have died, although it would be wonderful to bring Goldblum back for some smarmy wit (please!).

Second of all, the next film can’t be set in Jurassic World. There’s not much left to do there (JW already spent much of its time hearkening back to JP), and there’s no way the park would re-open. We need something new. I think by now we’re (very) tired of characters running around islands full of dinosaurs and the Blackfish parallel was milked dry in the latest movie. We need to spend a film with the dinosaurs amongst humanity (as Lost World briefly did), and much as I’d love to see the crazy drug lord/kidnapping plot happen, it won’t. But JW did set one thing up that has to happen now in its sequel: the paramilitary role of engineered, trained dinosaurs. We now know they can sort of train their dinosaurs and they can forge them to be anything they want to in terms of geno/phenotypes. They’ll learn from some mistakes of JW and engineer (or already did by the end of JW, at some remote site) some more compliant, deadlier animals, having largely given up on the public exhibition angle. The naked raptors and T. rex probably have to re-appear (sigh), but enough already of the giant uber-theropods like Spinosaurus and Indominus. The latter was already enough of a reprise of the former (plus psychic talents and chameleon powers etc.). Something truly novel is needed.

Unless they engineer a hyper-aggressive, intelligent sauropod or ceratopsian, which would admittedly be neat, I have this prediction (which is probably wrong but hey!): they have shown they can hybridize anything. There must be fewer and fewer “normal” (1990s…) dinosaurs now in the JW universe. So the next big step, which someone in the JW universe surely would do, is to hybridize dinosaurs and humans. Maybe some raptor-human hybrids, maybe also saving a tyranno-human hybrid for a surprise late appearance. But this is the sensible next step because it allows them to play with the (tired) Frankenstein monster trope but also touch on the hot topic of human cloning and human GM.

Abandoned concept art from JP4; from here

Abandoned concept art from JP4; from here

And by unleashing dino-human hybrids, or at least some freaky clicker-trained and engineered super-dinos, they could also explore the military theme, which the JW universe still hasn’t delved into much. What if those hyper-smart, deadly hybrid dinos, led by Pratt and Howard’s expert training, were used to combat an ISIS-analogue terrorist threat? Dino-Avengers in the badlands of Afghanistan or Iraq? Too predictable perhaps, but that’s a film that the public will want to see. Yeah there’s plenty of stupid there, but there’s no turning back– each film ups the ante, as JW ironically reminds us several times. We’re already in firmly in stupid-land, and the science has largely advanced to the point of magic. My idea is too uncomfortably close to the abandoned John Sayles plot, true. Darn. And (groan) kids have to be involved in some way to make it a family film so it rakes in the $$$ again, so either they get caught in the middle of the paramilitary mess or they are the ones that have to be saved… or the hybrid dinos are cute-ish kids themselves that Pratt and Howard must manage… (shades of Teenage Mutant Ninja Turtles/Kick-Ass?) I’ve found that more fun to think about than dwelling on the flaws of the movie, which is frankly too easy.

(Another good theme that Vivian Allen suggested to me would be climate change and invasive species—i.e. planet warms, dinos are already loose and go feral in waterlogged Central America, ecological disaster is looming and something must be done to round up the dinos… could work in some other bits like ecotourists or drug runners?)

That’s as far as my wildly speculative ruminating has taken me, but I wanted to turn it over to you, Freezerinos. If you were to make the next film (will it be “Jurassic World 2”? “Jurassic Army”? or as I’ve proffered in the post’s title, “Jurassic Future”?), what would it be (A) in your ideal world where you call all the shots (yes, lots of colourful feathery dinos, I know), vs. (B) in a more likely (less daring, more Hollywood) reality, along the lines of what I’ve tried to do here? (but I surely will be wrong, although we’ll see in 2-5 years!)

 

Read Full Post »

Older Posts »