Feeds:
Posts
Comments

Seeking adaptations for running and swimming in the vertebral columns of ancient crocs

A guest post by Dr. Julia Molnar, Howard University, USA (this comes from Julia’s PhD research at RVC with John & colleagues)

Recently, John and I with colleagues Stephanie Pierce, Bhart-Anjan Bhullar, and Alan Turner described morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs (Royal Society Open Science, doi 10.1098/rsos.150439). Our results shed light upon key aspects of the evolutionary history of these under-appreciated archosaurs.

Stomach-Churning Rating: 5/10; a juicy croc torso in one small photo but that’s all.

Phylogenetic relationships of the three crocodylomorph groups in the study and our functional hypotheses about their vertebrae. * Image credits: Hesperosuchus by Smokeybjb, Suchodus by Dmitry Bogdanov (vectorized by T. Michael Keesey) http://creativecommons.org/licenses/by-sa/3.0

Phylogenetic relationships of the three crocodylomorph groups in the study and our functional hypotheses about their vertebrae. * Image credits: Hesperosuchus by Smokeybjb, Suchodus by Dmitry Bogdanov (vectorized by T. Michael Keesey) http://creativecommons.org/licenses/by-sa/3.0

As fascinating as modern crocodiles might be, in many ways they are overshadowed by their extinct, Mesozoic cousins and ancestors. The Triassic, Jurassic, and early Cretaceous periods saw the small, fast, hyper-carnivorous “sphenosuchians,” the giant, flippered marine thalattosuchians, and various oddballs like the duck-billed Anatosuchus and the aptly named Armadillosuchus. As palaeontologists/biomechanists, we looked at this wide variety of ecological specializations in those species, the Crocodylomorpha, and wanted to know, how did they do it?

Of course, we weren’t the first scientists to wonder about the locomotion of crocodylomorphs, but we did have some new tools in our toolbox; specifically, a couple of micro-CT scanners and some sophisticated imaging software. We took CT and micro-CT scans of five fossil crocodylomorphs: two presumably terrestrial early crocodylomorphs (Terrestrisuchus and Protosuchus), three aquatic thalattosuchians (Pelagosaurus, Steneosaurus, and Metriorhynchus) and a semi-aquatic modern crocodile (Crocodylus niloticus). Since we’re still stuck on vertebrae (see, e.g., here; and also here), we digitally separated out the vertebrae to make 3D models of individual joints and took measurements from each vertebra. Finally, we manipulated the virtual joint models to find out how far they could move before the bones bumped into each other or the joints came apart (osteological range of motion, or RoM).

 

Our methods: get fossil, scan fossil, make virtual fossil and play with it.

Our methods: get fossil (NHMUK), scan fossil, make virtual fossil and play with it.

Above: Video of a single virtual inter-vertebral joint from the trunk of Pelagosaurus typus (NHMUK) showing maximum osteological range of motion in the lateral direction (video). Note the very un-modern-croc-like flat surfaces of the vertebral bodies! (modern crocs have a ball-and-socket spinal joint with the socket on the front end)

While this was a lot of fun, what we really wanted to find out was whether, as crocodylomorphs became specialized for different types of locomotion, the shapes of their vertebrae changed similarly to those of mammalian lineages. For example, many terrestrial mammals have a lumbar region that is very flexible dorsoventrally to allow up-and-down movements during bounding and galloping. Did fast-running crocodylomorphs have similar dorsoventral flexibility? And did fast-swimming aquatic crocodylomorphs evolve a stiffer vertebral column like that of whales and dolphins?

Above: Video of how we modelled and took measurements from the early crocodylomorph Terrestrisuchus gracilis (NHMUK).

Our first results were puzzling. The Nile croc had greater RoM in side-to-side motions, which makes sense because crocodiles mostly use more sprawling postures and are semi-aquatic, using quite a bit of side-to-side motions in life. The part that didn’t make sense was that we found pretty much the same thing in all of the fossil crocodylomorphs, including the presumably very terrestrial Terrestrisuchus and Protosuchus. With their long limbs and hinge-like joints, these two are unlikely to have been sprawlers or swimmers!

So we started looking for other parts of the croc that might affect RoM. The obvious candidate was osteoderms, the bony scales that cover the back. We went back to John’s Freezer and got out a nice frozen crocodile to measure the stiffness of its trunk and found that, sure enough, it was a lot stiffer and less mobile without the osteoderms. If the fairly flexible arrangement of osteoderms in crocodiles had this effect on stiffness, it seemed likely that (as previous authors have suggested; Eberhard Frey and Steve Salisbury being foremost amongst them) the rigid, interlocking osteoderms running from head to tail in early crocodylomorphs would really have put the brakes on their ability to move their trunk in certain ways.

Testing stiffness of crocodile trunks to learn the effects of osteoderms, skin, muscles, and ribs. We hung metric weights from the middle of the trunk and measured how much it flexed (Ɵ), then removed bits and repeated.

Testing the stiffness of (Nile) crocodile trunks to learn the effects of osteoderms, skin, muscles, and ribs. We hung metric weights from the middle of the trunk and measured how much it flexed (Ɵ), then removed bits and repeated. Click to em-croccen.

Another cool thing we found was new evidence of convergent evolution to aquatic lifestyles in the spines of thalattosuchians. The more basal thalattosuchians, thought to have been near-shore predators, had stiffness and RoM patterns similar to Crocodylus. But Metriorhynchus, which probably was very good at chasing down fast fish in the open ocean, seems to have had greater stiffness. (The stiffness estimates come from morphometrics and are based on modern crocodiles; see here again, or just read the paper already!) A stiff vertebral column can be useful for a swimmer because it increases the body’s natural frequency of oscillation, and faster oscillation means faster swimming (think tuna, not eel). The same thing seems to have happened in other secondarily aquatic vertebrate lineages such as whales, ichthyosaurs, and mosasaurs.

So, our results were a mixed bag of adaptations particular to crocs and ones that seem like general vertebrate swimming specializations. Crocodylomorphs are important because they are the only group of large vertebrates other than mammals that has secondarily aquatic members and has living members with a reasonably similar body plan, allowing us to test hypotheses in ways that would arguably be impossible for, say, non-avian dinosaurs and birds. The take-home message: crocodylomorphs A) are awesome, and B) can teach us a lot about how vertebrates adapt to different modes of life.

Another take on this story is on our lab website here.

I was recently featured on Daily Planet, a great Canadian science show on TV that lamentably is not broadcast more globally. It is always high quality science communication, aided by the superb hosts Ziya Tong and Dan Riskin (and a talented crew!). What were we doing? Dissecting an elephant’s foot, of course!

Stomach-Churning Rating: 9/10; no-holds-barred dismantling of elephant feet, from the video onwards, and this post is heavy on moist, goopy photos afterwards, with some nasty pathologies. Not nice at all. I’ll give you a chance to turn around while contemplating the cart that we use to carry elephant feet around campus (each foot is 20-30kg; up to 70lbs; so we need the help!), before the video.

no_poo

Here is a snippet of the full segment from Daily Planet:

And here is more of some of my recent dissections. I’ll walk you through two dissections, via photos. This goes back to the roots of this blog: unflinching, gritty examinations of real anatomy! Of course, no elephants were harmed for this work. They died at EU zoos/parks and were sent to me for postmortem examination and research, so we hope that this benefits the future care of elephants. We’re currently finishing up a grand overview paper that describes all of the odd pathologies we’ve observed in elephant feet, for the benefit of zoo keepers and vets who are trying to detect, diagnose and monitor any foot problems.

As the post’s title alludes, elephant feet (and more proximal parts of the limbs) are no stranger to this blog. If you’ve forgotten or are unfamiliar, here are some of my past proboscidean-posts: on elephant foot pathologies (a close sister post to this one), our “six-toed” elephants paper, how to make a computer simulation of an elephant’s limb (umm, paper yet to come!), how we boil and bleach bones to clean them up, and a few others. Last but not least, there was the post that went viral in the early #JohnsFreezer/WIJF days: dissecting an elephant with the “Inside Nature’s Giants” show.

There are two feet in this post, both front right feet (manus is the technical term; singular and plural). The first one is the messier (unhealthy and bloodier, less fresh and clean) one, from the show/video. It is an Asian elephant (Elephas maximus). I kick off with photos I took after the filming, so the foot is already deconstructed:

Skinned foot, oblique front/inside view.

Skinned foot, oblique front/inside view. The wrist is on the right side of the photo; the toes on the left.

Sole ("slipper"), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out.

Sole (“slipper”), with a hole on the fourth toe showing where the abscess is that let infection in/pus drain out. The slipper here is upside-down.

Top-down view of the sole of the foot, once the slipper is removed.

Top-down view of the sole of the foot, once the slipper is removed; flipped over and rotated 90 degrees clockwise from the above photo. Some of the fat pad of the foot is on the right side of the image; it’s very hard to separate from the keratinous sole of the foot.

Looking down into the fourth toe's abscess on the other side of the above view.

Looking down into the fourth toe’s (ring finger) abscess on the other side of the above view.

Looking down into the third (middle) toe, same view as above. Some redness and greyness where this toe had some of its own pathological issues.

Looking down into the second toe (index finger), same view as above. Some redness and greyness where this toe had some of its own pathological issues like infection and a smaller abscess.

Looking up from the slipper at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot).

Looking up from the slipper (removed) at the fat pad and toes of the foot, where they interface with the sole/slipper. The fat pad is toward the bottom and left side; the five toes are on the upper/right side (knobby subcircular regions on the perimeter of the foot). The very bad infection on the fourth toe is visible on the bottom right.

The sproingy fat pad is worth a video!

And one good wiggle deserves another!

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the "hand" are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant's foot.

A view down onto the wrist joint. The carpal (wrist) bones are visible at the bottom of the image, whereas the flexor (palmar) tendons and muscles on the back of the “hand” are at the top. There is a LOT of musculotendinous tissue on the back side of an elephant’s foot. As you will see in my dissection of the second foot, further below!

Looking down onto the medial (inner/"thumb") border of the foot, where I've exposed the prepollex, or false "sixth finger" by removing the first metacarpal (knuckle) bone.

Looking down onto the medial (inner/”thumb”) border of the foot, where I’ve exposed the prepollex, or false “sixth finger”, by removing the first metacarpal (knuckle) bone.

Removed the prepollex from the foot. The white oval structure is the top of the prepollex; white is cartilage, whereas the red "islands" are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone.

I’ve removed the prepollex from the foot. The white oval structure (bottom right) is the top of the conical prepollex, where it connected to the rest of the foot. White is cartilage, whereas the red “islands” are blood vessels that have invaded the cartilage and are starting to turn it into patches of bone. So this prepollex is at a very early stage of bone formation, still almost entirely cartilaginous, whereas some older elephants have the prepollex largely formed of bone. The fleshy pink tissue adhering to the surface of the prepollex here is a remnant of “abductor” muscle that connects it to the thumb and thus could allow some active control of the prepollex’s mobility.

Well, that was one very pathological elephant’s foot; one of the worst I have ever seen. Every foot I dissect is different and tells me a unique story about that animal’s development, history and health. This one told a very sad tale. What does a somewhat normal elephant’s foot look like? I thawed one out for comparison, and to thin out my overstuffed freezer stock. This one starts off from an intact (if severed) foot so you can witness the stages of dissection:

Whole foot. African elephant (Loxodonta africana).

Whole foot. African elephant (Loxodonta africana). You may spot in later photos that the second and fourth toes’ nails are cracked longitudinally. This happens sometimes in elephants without any obvious health problems such as infection, but if it lasts long enough and conditions are bad enough (e.g. unsanitary conditions getting bacteria into the crack; spreading the crack to let them into the foot tissue), it could worsen.

Nice clean sole.

Nice clean sole. No abscesses or other problems. You can faintly see the cracked toenails here.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Gorgeous white cartilage surfaces of the wrist joints. Nice and healthy-looking. A young animal, in this case.

Removing the skin; nice soft whitish connective tissue underneath.

Removing the skin; nice soft whitish connective tissue underneath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; rear view. The yellowish fat pad is wonderfully visible through the connective tissue sheath.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot's surface, running to the toes.

Skinned foot; front view. The thin, broad extensor tendons that would draw the fingers forward in life are visible here as longitudinal lines along the foot’s surface, running to the toes.

Ahh, my favourite thing! I've cut around the prepollex and am pointing at it. It's almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Ahh, my favourite thing! I’ve cut around the prepollex and am pointing at it. It’s almost impossible otherwise to see through all the fatty tissue of the fat pad that surrounds it.

Removing the prepollex. It's tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

Removing the prepollex. It’s tiny and enmeshed in connective tissue; harder to see than in the first elephant (photos above).

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These "sesamoid bones" vary tremendously in elephants I've inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

There is the prepollex! Maybe 12cm long. A little bit of cartilage (white) visible where it connected to the foot. These “sesamoid bones” vary tremendously in elephants I’ve inspected. I am still getting my head around that, after >10 years of staring at them in >75 feet!

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That's what elephants have.

Gap left by removal of the prepollex, on the median border of the foot; thumb region. Imagine having a little extra thumb growing off the base of your thumb and sticking toward your palm. That’s what elephants have.

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

Here, removing the slipper/sole of the foot, from the back side forwards. Hard work!

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

The slipper. Compare with the image above (same orientation). Nothing wrong here that I could see.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Front view of the toes, where they connect to the toenails. This specimen was so fresh that they were surprisingly easy to cut through and remove the foot from the sole.

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking up at the palm. You can see the bulbous fat pad (yellower tissue) bulging out in the centre of the palm, and segments of it extending between each finger, separated by fibrous tracts. I love this anatomy. I can stare at it for hours and still be fascinated after all these years. So complex!

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Looking down onto the inside of the toenails, toes 3 and 4. Healthy, relatively intact tissue; no swelling or bleeding or other pathology.

Skinned foot, oblique front/inside view again, as above.

Skinned foot, oblique front/inside view again, as above.

Fat pad removed, looking up through where it was at the palm of the "hands", where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the "thumb" (first toe) is on the upper left.

Fat pad removed, looking up through where it was at the palm of the “hands”, where the tendons and ligaments connect to the five toes. Each arc-like structure is a toe; the “thumb” (first toe) is on the upper left.

Elephant's-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life.

Elephant’s-eye-view looking down onto the fat pad, where the palm of the foot in the image below would be placed in life (i.e. the limb would be coming down vertically, perpendicular to the plane of the image). The fat pad of the foot is visibly thicker toward the back of the foot (bottom of the image), as you’d expect, because the toes occupy most of the front parts.

Palmar tendons and muscles; the common digital extensor muscle group. Clenches the toes. Not a small muscle, either!

Palmar tendons and muscles; the common digital extensor muscle group, which clenches the toes. Not a small muscle, either!

Tendons of the digital flexor muscle exposed.

Tendons of the digital flexor muscle exposed.

Removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

I removed the digital flexor muscle so the three major tendons can be seen (the two short side branches to the first and fifth toes have been cut off).

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Forefoot with flexor tendons removed, revealing the channels that they coursed through.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we've done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Closeup of the glistening channels for the flexor tendons. They are lined with lubricative tissue to help the tendons glide through them. And the tendons do need to be able to glide- although elephant feet look very solid from the outside, and are to an extent, but we’ve done studies showing that they do move if you apply even a moderate load to them in a cadaver, and thus would move in life, too.

Let’s finish off with some osteology, shall we? First the unhealthy Asian elephant, then the healthy African elephant; same front right feet, just the bones (from my CT scans):

Ouch, indeed!

Much better. And that’s the end!

Wow, that was an elephantine post! I wanted to take yet another opportunity to share the amazing anatomy of elephant feet with you. You’re all now qualified experts if you made it this far!

Any questions?

Goat To Be Seen

Goat morphology is cool! (from work with local artist)

I posted the above photo once before, but didn’t explain any of the fun details of artist-designer Thomas Thwaites‘s visit to the RVC to dissect a goat with us. Now his show has just finished in London, celebrating the end of his project and the near-completion of his book about his experience trying to live life as a goat. This week, I went to his east side gallery and had some time to chat with Thomas about his transhuman experiences. Because the project has a strong biomechanics, anatomy, art and science theme to it, I’m posting a photo-blog post about all of that. It’s goat to be seen to be believed! I for one wouldn’t mind being a goat right now; I could use a break from my decrepit body…

Stomach-Churning Rating: Too late, there’s the goat pic above and more like it below. I’d give those a 8/10; no kidding. The puns make it worse, too.

The context

The context. Thomas never did get to gallop (sorry, spoiler!) but he did manage a trot, and some other capricious behaviours. I forgot to ask him if he’d tried the Goat Simulator. I have; it’s good for an hour of fun hircosity.

Starting the dissection at the RVC.

Starting the dissection at the RVC, to get inside a goat.

Hide.

Hide.

Fore- and hindlimbs.

Fore- and hindlimbs; comparative design for inspiring prosthetics.

Dissections!

Dissections on display!

Prototype goat-suits. Their mobility was too limited.

Prototype goat-suits. Their mobility was too limited.

The prototype in the foreground could not move without falling down.

The prototype in the foreground could not move without falling down.

Goat-suit shots.

Inhabited-goat-suit shots.

The Goat-Suit: custom made prothetics, a helmet, and some form-fitting casts.

The final Goat-Suit: custom prosthetics, a helmet, and some form-fitting casts.

Thomas Thwaites with the goat-suit.

Thomas Thwaites with the goat-suit.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms.

The forelimb prosthesis. I was worried it would hurt his wrists but apparently it transferred the loads mainly to the forearms. It was made by a prosthetics clinic up in Salford.

Showroom

Photos from rambling around the Swiss Alps in the goat-suit with goats.

Trip-trap-trip-trap...

Trip-trap-trip-trap… (but no trolls)

Goat-suit in action!

Goat-suit in action! With Goat-Pro camera, I see.

Acceptance?

Acceptance?

And the goat that we had dissected, skeletonized at RVC and re-articulated by Thomas:

Do goats wish they were human?

Do goats wish they were human?

What are you looking at?

What are you looking at?

Close-up of goat head.

Close-up of goat head and shoulders.

Goat hooves-on-hips

Goat hooves-on-hips; a gruff pose.

So like us.

So like us.

Excellent post by a summer research student on my team!

From BSc to the future: the journey of a locomotion student

I spent this summer, the second of my undergraduate degree, in the Royal Veterinary College’s Structure and Motion Laboratory, as I undertook a BBSRC-funded Summer Research Experience Placement. The purpose of the REP is to give undergrad students a taste of what research would be like as a career. In my case, I was given the fantastic opportunity to study giraffe locomotion. Mentored by Christopher Basu, a PhD student in the SML, and Professor John Hutchinson, my ten-week project began at the start of July.

First things first, I had some ground work to do. All the data had been collected prior to my placement, though I will be joining Chris next week to collect fresh data for his future work. Giraffes were recorded using high speed video cameras walking parallel to the edge of their enclosure, over concealed force-plates measuring ground reaction forces. I was provided with 3 days’…

View original post 650 more words

This is a follow-up post to my earlier one and also weaves into my post on “success” (with a little overlap). I am sharing my thoughts on this topic of research management, because I try to always keep myself learning about doing and managing research, and this blog serves as a set of notes as I learn; so why not share them too? I tried editing the old post but it clearly was too much to add so I started a new post. It’s easy to just coast along and not reflect on what one is doing, caught up in the steady stream of science that needs to get done. Mistakes and mis-judgements can snowball if one doesn’t reflect. So here are my personal reflections, freshly thawed for your consideration, on how I approach doing research and growing older as I do it, adapting to life’s changes along the way.

Stomach-Churning Rating: 0/10, just words and ideas.

I realized that a theme in these rant-y posts on my blog is to Know Yourself, and, in the case of mentoring a team, Know Your Team. That knowledge is a reward from the struggles and challenges of seeking whatever one calls success. I critique some traits or practices here that I’ve seen in myself (and/or others), and perhaps managed to change. And I seek to change my environment by building a strong team (which I feel I have right now!) and by finding the best ways to work with them (which I am always learning about!). I also realized a word to describe a large part of what I seek and that is joy. The joy of discovery in the study of nature; the joy from the satisfaction of a job well done; the joy of seeing team members succeed in their careers and broader lives. I want to know that multifarious joy; the ripening of fulfilment.

We’re all busy in one way or another. Talking about being busy can just come across as (very) boring or self-absorbed or insecure. Talk about what you’re doing instead of how much you’re juggling. That’s more interesting. Avoid the Cult of Busy. I try to. It’s any easy complaint to default with in a conversation, so it takes some alertness… which keeps you busy. :-)  I remember Undergrad-Me sighing wistfully to my advisor Dianna Padilla “I’m SO busy!” and her looking at me like I was an idiot. In that moment I realized that I was far from the only (or most) busy person in that conversation. Whether she was truly thinking that I was naïve, my imaginary version of her reaction is right. It was a foolish, presumptuously arrogant thing for me to declare. There surely are more interesting things to talk about than implied comparisons of the magnitudes of each other’s busy-ness. And so I move on…

Don’t count hours spent on work. That just leads to guilt of too much/too little time spent vs. how much was accomplished. Count successes. A paper/grant submitted is indeed a success, and acceptance/funding of it is another. A handy rule in science is that everything takes so much more time than you think it does that even trying to predict how long it will take is often foolish and maybe even time that could be better spent on doing something that progresses your work/life further.

Becoming older can slow you down and make you risk-averse, so you have to actively fight these tendencies. Ageing as a researcher needn’t always mandate becoming slower or less adventurous. But life will change, inevitably. One has to become more efficient at handling its demands as life goes on, and force oneself to try new things for the sake of the novelty, to think outside the box and avoid slipping into dogma or routine. We don’t want to be that stereotype of the doddering old professor, set in their ways, who stands in the way of change. The Old Guard is the villain of history. Lately I’ve been examining my own biases and challenging them, potentially re-defining myself as a scientist. I hope to report back on that topic.

The tone of life can darken as one becomes a senior researcher and “grows up”, accumulating grim experiences of reality. Some of my stories on this blog have illustrated that. In an attempt to distract me from that gloaming on the horizon, I try to do things at work that keep it FUN for me. This quest for fun applies well to my interactions with people, which dominate my work so much– I am seemingly always in meetings, less often in isolation at my desk. The nicer those meetings are, the happier I am. So I try to minimize exposure to people or interactions that are unpleasant, saving my energy for the battles that really matter. This can come across as dismissive or curt but in the end one has little choice sometimes. These days, nothing to me is more negatively emotive than sitting in an unproductive meeting and feeling my life slipping away as the clock ticks. I cherish my time. I don’t give it away wantonly to time-vampires and joy-vandals. They get kicked to the kerb– no room (or time) for them on this science-train. Choo choo!

Moreover, the No Asshole Rule is a great principle to try to follow at work. Don’t hire/support the hiring of people that you can’t stand socially, even if they are shit-hot researchers with a hugely promising career trajectory. Have a candidly private moment with someone who knows them well and get the inside scoop on what they’re like to work with. Try to get to know people you work with and collaborate more with people that you like to work with. Build a team of team-players (but not yes-men and yes-women; a good team challenges you to know them and yourself; so there must be some tension!). That can help you do better science because you enjoy doing it more, and you prioritize it more because of that, and you have more energy because of all that. Hence your life gets better as a result. I prefer that to a constant struggle in tense, competitive collaborations. One of the highest compliments I ever got was when someone described me to their friend as a “bon vivant”. I felt like they’d discovered who I was, and they’d helped me to discover it myself.

I wondered while writing this, would I hire 2003-Me, from when I was interviewing for my current job 12 years ago? I suppose so, but I’d give myself a stern scolding on day one at the job. “Chill the fuck out,” I’d say. “Focus on doing the good science and finding the other kinds of joy in life.” I like the more mellowed-out, introspective, focused, compassionate 2015-Me, and I think 2003-Me would agree with that assessment.

There is a false dichotomy in a common narrative about research mentoring that I am coming to recognize: a tension between the fortunes of early career researchers and senior research managers. The dichotomy holds that once one is senior enough, ambition wanes and success is complete and one’s job is to support early career researchers to gain success (as recompense for their efforts in pushing forward the research team’s day-to-day science), and to step back out of the limelight.

The reality, I think, is that all these things are linked: early career researchers succeed in part because their mentors are successful (i.e. the pedigree concept; good scientists arise in part from a good mentoring environment), and research-active mentors need to keep seeking funding to support their teams, which means they need to keep showing evidence of their own success. Hence it never ends. One could even argue that senior researchers need to keep authoring papers and getting grants and awards and other kinds of satisfaction and joy in science that maintain reputations, and thus their responsibility to themselves and their team to keep pushing their research forward may not decrease or even may intensify. Here, a “team” ethos rather than an “us vs. them” mentality seems more beneficial to all—we’re in this together. Science is hard. We are all ambitious and want to achieve things to feel happy about. I don’t think the “it never ends” perspective is gloomy, either—if the false dichotomy were true, once one hit that plateau of success as a senior researcher, ambition and joy and personal growth would die. Now that’s gloomy. Nor does the underlying pressure mandate that researchers can’t have a “life outside of work”. I’ve discussed that enough in other posts.

Trust can be a big issue in managing research. If people act like they don’t trust you, it may be a sign that they’ve been traumatized by violated trust before. Be sensitive to that; gently inquire? And get multiple sides of the story from others if you can… gingerly. But it also might be a warning sign that they don’t deserve trust themselves. Trust goes both ways. Value trust, perhaps above all else. It is so much more pleasant than the lack thereof. Reputation regarding trustworthiness is a currency that a research manager should keep careful track of in themselves and others. Trust is the watchdog of joy.

Say “No” more often to invitations to collaborate as your research team grows. “Success breeds success” they say, and you’ll get more invitations to collaborate because you are viewed as successful — and/or nice. But everyone has their limits. If you say “Yes” too much, you’ll get overloaded and your stock as a researcher will drop– you’ll get a reputation for being overcommitted and unreliable. Your “Yes” should be able to prove its value. I try to only say “Yes” to work that grabs me because it is great, do-able science and with fun people that I enjoy collaborating with. This urge to say “No” must be balanced with the need to take risks and try new directions. “Yes” or “No” can be easy comfort zones to settle into. A “Yes” can be a longterm-noncommittal answer that avoids the conflict that a “No” might bring, even if the “No” is the more responsible answer. This is harder than it seems, but important.

An example: Saying “No” applies well to conference invitations/opportunities, too. I love going to scientific conferences, and it’s still easy enough to find funding to do it. Travel is a huge perk of academic research! But I try to stick to a rule of attending two major conferences/year. I used to aim for just one per year but I always broke that rule so I amended it. Two is sane. It is easy to go to four or more annual conferences, in most fields, but each one takes at least a week of your time; maybe even a month if you are preparing and presenting and de-jetlagging and catching up. Beware the trap of the wandering, unproductive, perennial conference-attendee if doing science is what brings you joy.

This reminds me of my post on “saying no to media over-coverage“– and the trap of the popularizer who claims to still be an active researcher, too. There is a zero-sum game at play; 35 or 50 hour work week notwithstanding. Maybe someday I’d want to go the route of the popularizer, but I’m enjoying doing science and discovering new things far too much. It is a matter of personal preference, of course, how much science communication one does vs. how much actual science.

The denouement of this post is about how research teams rise and fall. I’m now often thinking ahead to ~2016, when almost all of my research team of ~10 people is due to finish their contracts. If funding patterns don’t change — and I do have applications in the works but who knows if they will pan out — I may “just” have two or so people on my team in a year from now. I could push myself to apply like mad for grants, but I thought about it and decided that I’ll let the fates decide based on a few key grant submissions early in the year. There was too little time and too much potential stress at risk. If the funding gods smile upon me and I maintain a large-ish team, that’s great too, but I would also truly enjoy having a smaller, more focused team to work with. I said “No” to pushing myself to apply for All The Grants. I’ll always have diverse external collaborations (thanks to saying “Yes” enough), but I don’t define my own success as having a large research group (that would be a very precarious definition to live by!). I’m curious to see what fortune delivers.

Becoming comfortable with the uncertainty of science and life is something I’m finding interesting and enjoy talking about. It’s not all a good thing, to have that sense of comfort (“whatever happens, happens, and I’m OK with that”). I don’t want my ambition to dwindle, although it’s still far healthier than I am. There is no denying that it is a fortunate privilege to feel fine about possibly not drowning in grant funds. It just is what it is; a serenity that I welcome even if it is only temporary. There’s a lot of science left to be written about, and a smaller team should mean more time to do that writing.

Will I even be writing this blog a year from now? I hope so, but who knows. Blogs rise and fall, too. This one, like me, has seen its changes. And if I am not still writing it, it might resurface in the future anyway. What matters is that I still derive joy from blogging, and I only give in to my internal pressure to write something when the mood and inspiration seize me. I hope someone finds these words useful.

I have an impression that there is a large disparity between how the public views museums and how scientists who use museums view them. Presumably there are survey data on public attitudes, but surely the common impression is that museums mainly exist to exhibit cool stuff and educate/entertain the public. Yet, furthermore, I bet that many members of the public don’t really understand the nature of museum collections (how and why they are curated and studied) or what those collections even look like. As a researcher who tends to do heavily specimen-oriented and often museum-based research, I thought I’d take the opportunity to describe my experience at one museum collection recently. This visit was fairly representative of what it’s like, as a scientist, to visit a museum with the purpose of using its collection for research, rather than mingling with the public to oggle the exhibits — although I did a little of that at the end of the day…

Stomach-Churning Rating: 4/10; mostly bones except a jar of preserved critters, but also some funky bone pathologies! Darwin hurls once, totally blowing chunks, but only in text.

Early camel is sitting down on the job at the NHMLA.

Early camel is sitting down on the job at the NHMLA.

About two weeks ago, I had the pleasure to spend a fast-paced day in the Ornithology collection of the Natural History Museum of Los Angeles County (NHMLA or LACM). I arranged the visit (you have to be a credible researcher to get access; luckily I seemed to be that!) via email, took an Uber car to the museum, and was quickly cut loose in the collection. I was hosted by the Collections Manager Kimball Garrett, who is an avid birder (adept at citizen science, too!) and a longtime LA native.

Amongst museum curators and collections managers (there can be a distinction between the two but here I’ll refer to them all as “curators”), there is a wide array of attitudes toward and practices with museum collections, regarding how the curators balance their varied duties of not only making the museum collection accessible to researchers (via behind-scenes studies) and the public (via exhibits and behind-scenes tours etc.), but also curation (maintaining a record of what they have in their collection, adding to it, and keeping the specimen in good condition), research, admin, teaching and other duties.

Most curators I’ve known, like Kimball, are passionate about all of these things, and very generous with their time to help scientists make the most of the collection during their visit, offering hospitality and cutting through the bureaucracy as much as possible to ensure that the science gets done. There are those few curators that aren’t great hosts because they’ve had a bad day or a bad attitude (e.g. obsession with paperwork and finding obstacles to accessing specimens for research; or just not responding to communication), but they are few and far between in my experience.

Regardless, the curator is the critical human being that keeps the wheels of specimen-based museum research rolling, and I am appreciative of how deeply dedicated and efficient most curators are. Indeed, I enjoy meeting and chatting with them because they tend not only to be fun people but also incredibly knowledgeable about their collection, museum, and area of expertise. Sadly, this trip was so time-constrained that I didn’t get much time at all for socializing. I had about five hours to get work done so I plunged on in!

Images, as always, can be clicked to emu-biggen them. Thanks to the NHMLA for access!

My initial look down the halls of the osteology storage. Rolling cabinets (on the right) are a typical sight.

My initial look down the halls of the osteology storage. Rolling cabinets (on the right) are a typical sight.

Freezers ahoy!

Freezers ahoy! With Batman watching over them.

A jar of bats? Why not? Batman approves.

A jar of bats? Why not? Batman approves.

The curator cleared a space on a table for me to set bones on. Then the anatomizing and photographing began!

The curator cleared a space on a table for me to set bones on. Then the anatomizing and photographing began!

On entering a museum collection, one quickly gets a sense of its “personality” and the culture of the museum itself, which emerges from the curator, the collection’s history, and the museum’s priorities. There are fun human touches like the ones in the photos below, interspersed between the stinking carcasses awaiting skeletonization, the crumbling bone specimens on tables that need repair or new ID tags, or the rows upon rows of coffee cups ready to fuel the staff’s labours.

Yet another reason why Darwin kicks ass.

Yet another reason why Darwin kicks ass. And fine curator-humour!

Ironic bird pic posted on the wall.

Ironic bird pic posted on the wall.

Below a typical wall-hanging of a bovid skull, an atypical display of a clutch of marshmallow peeps. Contest to see whether the mammalian or pseudo-avian specimens last longest?

Below a typical wall-hanging of a bovid skull, an atypical display of a clutch of marshmallow peeps. Contest to see whether the mammalian or pseudo-avian specimens last longest?

The NHMLA’s collection is a world-class one, which I why I chose it as the example for this post. When I entered the collection, I got that staggering sense of awe that I love feeling, to look down the halls of cabinets full of skeletonized specimens of birds and be overwhelmed by the vast scientific resource it represents, and the effort it has taken to create and maintain it. Imagine entering a library in which every book had the librarian’s hand in writing and printing it, and that those books’ contents were largely mysteries to humanity, only some of which you could investigate during your visit. Museum collections exist to fuel generations of scientific inquiry in this way. Their possibilities are endless. And that is why I love visiting them, because every trip is an adventure into the unknown– you do not know what you will find. Like these random encounters I had in the collection’s shelves:

Sectioned moa thigh bones, showing thick walls and spars of trabecular bone criss-crossing the marrow cavities.

Sectioned moa thigh bones, showing thick walls and spars of trabecular bone criss-crossing the marrow cavities.

My gut reaction was that this is a moa wishbone (furcula)- not often seen! It is definitely not a shoulder girdle (scapulocoracoid), which would be larger and more robust, and have a proper shoulder joint. It could, though, be a small odd rib, I suppose.

My gut reaction was that this is a moa wishbone (furcula)- not often seen! It is definitely not a shoulder girdle (scapulocoracoid), which would be larger and more robust, and have a proper shoulder joint. It could, though, be a small odd rib, I suppose. EDIT: Think again, John! See 1st comment below, and follow-ups. I seem to be totally wrong and the ID of scapulocoracoid is right.

A cigar box makes an excellent improvised container for moa toe bones- why not?

A cigar box makes an excellent improvised container for moa toe bones- why not?

Moa feet: all the moa to love!

Moa feet: all the moa to love!

May the skull of the magpie goose (Anseranas semipalmata) haunt your nightmares.

May the skull of the magpie goose (Anseranas semipalmata) haunt your nightmares.

Double-owie: headed shank (tibiotarsus) bone of a magpie goose (Anseranas semipalmata). No mystery why this guy died: vet staff at the zoo tried to fix a major bone fracture, and it had time to heal (frothy bone formation) but presumably succumbed to these injuries/infection.

Healed shank (tibiotarsus) bone of the same magpie goose as above. It had its own nightmares! No mystery why this guy died: vet staff at the zoo tried to fix a major bone fracture (bracing it with tubes and metal spars), and it had time to heal (see the frothy bone formation) but presumably succumbed to these injuries/infection.

Kiwi (Apteryx australis mantelli) hand, showing feather attachments and remnant of finger(s).

Kiwi (Apteryx australis mantelli) hand, showing feather attachments and remnant of finger(s).

Now that I’m in the collection shelves area, it brings me to this trip and my purpose for it! I wanted to look at some “basal birds” for our ongoing patella (kneecap) evolution project, to check which species (or individuals, such as juveniles/adults) have patellae. Every museum visit as a scientist is fundamentally about testing whether what you think you know about nature is correct or not. We’d published on how the patella evolved in birds, but mysteries remain about which species definitely had a patella or how it develops. Museum collections often have the depth and breath of individual variation and taxonomic coverage to be able to address such mysteries, and every museum collection has different strengths that can test those ideas in different, often surprising, ways. So I ventured off to see what the NHMLA would teach me.

Shelves full of boxes, begging to be opened- but unlike Pandora's box, they release joyous science!

Shelves full of boxes, begging to be opened- but unlike Pandora’s box, they release joyous science!

Boxes of kiwis, oh frabjous day! A nice sample size like this for a "rare" (to Northern hemispherites) bird is a pleasure to see.

Boxes of kiwis, oh frabjous day! A nice sample size like this for a “rare” (to Northern hemispherites) bird is a pleasure to see.

Well, in my blitz through this museum collection I didn’t see a single damn patella!

As that kneecap bone is infamously seldom preserved in nice clean museum specimens, this did not surprise me. So I took serendipity by the horns to check some of my ideas about how the limb joints in birds in general develop and evolve. One thing I’ve been educating myself about with my freezer specimens and with museum visits (plus the scientific literature) is how the ends (epiphyses) of the limb bones form in different species of land vertebrates (tetrapods). There are complex patterns linked with evolution, biomechanics and development that still need to be understood.

Left side view of the pelvis of a very mature, HUGE Casuarius casuarius (cassowary). The space between the ilium (upper flat bone) and ischium (elongate bone on middle right side) has begun to be closed by a mineralization of the membrane that spanned those bones in life. A side effect of maturity, most likely. But cool- I've never seen this in a ratite bird before, that I can recall.

Left side view of the pelvis of a very mature, HUGE Casuarius casuarius (cassowary). The space between the ilium (upper flat bone) and ischium (elongate bone on middle right side) has begun to be closed by a mineralization of the membrane that spanned those bones in life. A side effect of maturity, most likely. But cool- I’ve never seen this in a ratite bird before, that I can recall.

Hatchling ostrich thigh bones (femora), showing the un-ossified ends that in life would be occupied by thick cartilage.

Hatchling ostrich thigh bones (femora), showing the pitted, un-ossified ends that in life would be occupied by thick cartilage.

A more adult ostrich's femora, with more ossified ends and thinner cartilages.

A more adult ostrich’s femora, with more ossified ends and thinner cartilages.

Rhea pennata (Darwin's rhea) femora (thigh bones), left (top) one with major pathology on the knee end; overgrown bone. Owie!

Rhea pennata (Darwin’s rhea) femora; right (top) one with a major pathology on the knee end; overgrown bone (osteoarthritis?). Owie!

Also very-unfused knee joints of a Darwin's rhea. Cool Y-shape!

Also very-unfused knee joints of a Darwin’s rhea hatchling. Cool Y-shape!

In birds, most of the bones don’t have anything that truly could be called an epiphysis– the bone ends are capped with thick cartilage that only gradually becomes bone as the birds get older, and even old-ish birds can still have a lot of cartilage (see photos above)– no “secondary centre” (true epiphysis) of bone mineralization ever forms inside that cartilage. However, there are two curious apparent exceptions to this absence of true epiphyses in avian limbs:

(1) in the knee joint, something like an epiphysis forms on the upper end of the tibia (shank bone) and fuses during growth (shown below). Sometimes that unfused epiphysis is confused with a patella, as our recent paper discussed; in any case, where that “epiphysis” came from in avian evolution is unclear. But also:

(2) in the ankle joint, several bones on both sides (shank and foot) of the joint fuse to the long-bones of the limbs, acting like epiphyses. It is well documented by the fossil record of non-avian and avian dinosaurs that these were the tarsals: at least five different bones (astragalus, calcaneum and distal tarsals) were individual bones for millions of years in various dinosaurs, then these all fused to form the “epiphyses” of the shank and foot, eventually completing this gradual fusion within the bird lineage. Modern birds obliterate the boundaries between these five or more bones as they grow.

These are worthwhile questions to pursue because they show us (1) how odd, little-explored features of the avian skeleton came to be; and (2) potentially more generally why limb bones develop the many ways they do in vertebrates, and how they might develop incorrectly — or heal if damaged.

Images below from the NHMLA collections show how this is the case. Fortunately(?) for me, they supported how I thought the “epiphyses” of avian limbs develop/evolved; there were no big surprises. But I still learned neat details about how this happens in individual species or lineages, especially for the knee joint.

Juvenile kiwi's shank (tibiotarsus) bones viewed from the top (proximal) ends, showing the bubbly nubbins of bone (very bottom of each bone image) that are the "cranial tibial epiphyses" often mistaken for patellae.

Juvenile kiwi’s shank (tibiotarsus) bones viewed from the top (proximal) ends, showing the bubbly nubbins of bone (very bottom of each bone image; lighter region) that are the “cranial tibial epiphyses” often mistaken for patellae.

Subadult kiwi's tibiotarsi in same view as above, showing the epiphyses fusing onto the tibiae.

Subadult kiwi’s tibiotarsi in same view as above, showing the smooth triangular epiphyses fusing onto the tibiae.

Adult kiwi's tibiotarsi (sorry, blurry photo) in which all fusion is complete.

Adult kiwi’s tibiotarsi (sorry, blurry photo) in which all fusion is complete.

Looking down at the top/ankle end of the tarsometatarsal (sole) bones in a hatchling ostrich: the three bones are separate and hollow, where "cartilage cones" would have filled them in.

Looking down at the top/ankle end of the tarsometatarsal (sole) bones in a hatchling ostrich: the three bones are separate and hollow, where “cartilage cones” would have filled them in. The left and right bones have different amounts of ossification; not unusual in such a young bird.

Ossified tendons (little spurs of long, thin bone) on the soles of the feet (tarsometatarsal bones) of a brush-turkey (Alectura lathami)- seldom described in this unusual galliform bird or its close relatives, and thus nice to see. These would be parts of the toe-flexor tendons.

Ossified tendons (little spurs of long, thin bone) on the soles of the feet (tarsometatarsal bones) of a brush-turkey (Alectura lathami)- seldom described in this unusual galliform bird or its close relatives, and thus nice to see. These would be parts of the toe-flexor tendons. Another nice thing about these two tarsometatarsus specimens is that their fusion is basically complete- each is one single bone unit, as in normal adult birds, rather than five or more.

My visit to the NHMLA bird bone collection was a lot of fun, because I got to do what I love: opening box after box of bone specimens, with bated breath wondering what would be inside. In this case, familiarity was inside, but my knowledge of avian bone development and evolution still improved. I got to look at a lot of ostriches, rheas, cassowaries and kiwis, more than I’d seen in one museum before, and that broadened my sample of young, juvenile and adult animals that I’d seen for these species. Their knees and ankles all grew in grossly similar ways, supporting this assumption in my prior work and building my confidence in published ideas. It’s always good to check such things. Each box opened takes some careful observation and cross-checking against all the facts and ideas swirling around in your head. You take notes, scale photos, measurements, do comparisons between specimens, and just explore; letting your curiosity run unleashed as you assemble knowledge, Tetris-like, in your mind.

And I had a lot of fun because a museum collection visit is like swimming in anatomy. You’re surrounded by more specimens than you could ever fully comprehend. Sometimes you run across an odd specimen whose anatomy tells you something about its life, like pathologies such as the terrible fractured magpie goose leg shown above. Or you see some curatorial touch that makes you chuckle at an apparent inside joke or mutter respect for their careful organization in tending their charges. That feeling of pulling open a museum drawer or box lid and peering inside is like few others in science — there might be disappointment inside (e.g. “Crap, that specimen sucks!”), boredom (“Oh. Another one of these!?”) or the joy of discovery (“Holy *@$£, I’ve never seen that before!”). My first scientific publication (in 1998) came from rummaging through the UCMP museum collections as a grad student and spotting an obscure pelvic bone that turned out to be highly diagnostic for the equally obscure clade of bird-like dinosaurs called alvarezsaurids. I happened to open that drawer with the alvarezsaurid specimen at the right time, shortly after the first ever specimen of that dinosaur had been described in the literature (~1994). Before then, no one could have identified what that bone was!

There is time for hours of quiet introspection during museum collection studies, immersed in this wealth of anatomical resources and isolated in a silent, climate-controlled tomb-like hall. It is relaxing and overwhelming at the same time. Especially in my case with just five hours to survey numerous species, you have to budget your time and think efficiently. It’s a unique challenge to explore a museum collection as a researcher. If you don’t learn something — especially in a good museum collection — you’re doing it wrong. In this time of tight finances and trends to close museums or stow away precious collections, it is important to vocally celebrate what a vast treasure museum collections are, and how the people that maintain them are vital stewards of those treasures.

I set the cat amongst the pigeons by also visiting the Page Museum at the La Brea Tar Pits in LA, to study fossil cats-- like this American lion (Panthera atrox) code-named "Fluffy", that we CT scanned during my LA visit-- more about that later!

I set the cat amongst the pigeons by also visiting the Page Museum at the La Brea Tar Pits in LA, to study fossil cats– like this American lion (Panthera atrox), code-named “Fluffy”, that we CT scanned during my LA visit– more about that later!

EDIT: I hurried this post off during my free time today, and still feel I didn’t fully capture the deep, complex feelings I have regarding museum collections and the delight I get from studying them. Other freezerinos, please add your thoughts in the Comments below!

Maybe it’s uncool to talk about heroes in science these days, because everyone is poised on others’ shoulders, but “Neill” (Robert McNeill) Alexander is undeniably a hero to many researchers in biomechanics and other strands of biology. Our lab probably wouldn’t exist without his pervasive influence- he has personally inspired many researchers to dive into biomechanics, and he has raised the profile of this field and championed its importance and principles like no other one individual. Often it feels like we’re just refining answers to questions he already answered. His influence extends not only to comparative biomechanics and not only around his UK home, but also –via his many, many books on biology, anatomy and related areas, in addition to his research, editorial work and public engagement with science– to much of the life sciences worldwide.

What does a kneecap (patella) do? Alexander and Dimery 1985, they knew. My team is still trying to figure that out!

What does a kneecap (patella) do? Alexander and Dimery 1985, they knew. 30 years later, my team is still trying to figure that out!

Sure, one could (and with great humility I’m sure Alexander would) mention others like Galileo and Marey and Muybridge and Fenn and Gray and Manter who came before him and did have a profound impact on the field. Alexander can, regardless, easily be mentioned in the same breath as luminaries of muscle physiology such as AV Hill and even Andrew + Julian Huxley. But I think many would agree that Alexander, despite coming later to the field, had a singular impact on this young field of comparative biomechanics. That impact began in the 1970s, when Dick Taylor and colleagues in comparative physiology were also exploding onto the scene with work at the Concord Field Station at Harvard University, and together biomechanics research there, in the UK, elsewhere in Europe and the world truly hit its stride, with momentum continuing today. I’m trying to think of some women who played a major role in the early history of biomechanics but it was characteristically a woefully male-dominated field. That balance has shifted from the 1970s to today, and my generation would cite luminaries such as Mimi Koehl as key influences. There are many female or non-white-male biomechanics researchers today that are stars in the field, so there seems to have been progress in diversifying this discipline’s population.

Hence, honouring Alexander’s impact on science, today our college gave Neill an honorary doctorate of science (DSc). Last year, I also helped organize a symposium at the Society for Vertebrate Paleontology’s conference in Berlin that honoured his impact specifically on palaeontology, too- compare his book “The Dynamics of Dinosaurs and Other Extinct Giants” to current work and you’ll see what fuelled much of that ongoing work, and how far/not far we’ve come since ~1989. Even 10 years later, his “Principles of Animal Locomotion“, with Biewener’s “Animal Locomotion“, remains one of the best books about our field (locomotion-wise; Vogel’s Comparative Biomechanics more broadly) , and his educational CD “How Animals Move“, if you can get it and make it work on your computer, is uniquely wonderful, with games and videos and tutorials that still would hold up well as compelling introductions to animal biomechanics. Indeed, I’ve counted at least 20 books penned by Alexander, including “Bones: The Unity of Form and Function” (under-appreciated, with gorgeous photos of skeletal morphology!).

1970s Alexander, with a sauropod leg.

1970s Alexander, with a sauropod leg.

And then there are the papers. I have no idea how many papers Neill has written –again and again I come across papers of his that I’ve never seen before. I tried to find out from the Leeds website how many papers he has, but they’re equally dumbfounded. I did manage to count 38 publications in Nature, starting in 1963 with “Frontal Foramina and Tripodes of the Characin Crenuchus,” and 6 in Science. So I think we can be safe in assuming that he has written everything that could be written in biomechanics, and we’re just playing catchup to his unique genius.

Seriously though, Alexander has some awesome publications stemming back over 50 years. I’m a big fan of his early work on land animals, such as with Calow in 1973 on “A mechanical analysis of a hind leg of a frog” and his paper “The mechanics of jumping by a dog” in 1974, which did groundbreaking integrations of quantitative anatomy and biomechanics. These papers kickstarted what today is the study of muscle architecture, which our lab (including my team) has published extensively on, for example. They also pioneered the integration of these anatomical data with simple theoretical models of locomotor mechanics, likewise enabling many researchers like me to ride on Alexander’s coattails. Indeed, while biomechanics often tends to veer into the abstract “assume a spherical horse”, away from anatomy and real organisms, Alexander managed to keep a focus on how anatomy and behaviour are related in whole animals, via biomechanics. As an anatomist as well as a biomechanist, I applaud that.

How do muscles work around joints? Alexander and Dimery 1985 figured out some of the key principles.

How do muscles work around joints? Alexander and Dimery 1985 figured out some of the key principles.

Alexander has researched areas as diverse as how fish swim, how dinosaurs ran, how elastic mechanisms make animal movement more efficient, how to model the form and function of animals (see his book “Optima for Animals” for optimization approaches he disseminated, typifying his elegant style of making complex maths seem simple and simple maths impressively powerful) and how animals walk and run, often as sole author. In these and other areas he has codified fundamental principles that help us understand how much in common many species have due to inescapable biomechanical constraints such as gravity, and how these principles can inspire robotic design or improvements in human/animal care such as prosthetics. Neill has also been a passionate science communicator, advising numerous documentaries on television.

~1990s Alexander, with model dinosaurs used to estimate mass and centre of mass.

~1990s Alexander, with model dinosaurs used to estimate mass and centre of mass.

Alexander’s “Dynamics of Dinosaurs” book, one of my favourites in my whole collection, is remarkably accessible in its communication of complex quantitative methods and data, which arguably has enhanced its impact on palaeontologists. Alexander’s other influences on palaeobiology include highly regarded reviews of jaw/feeding mechanics in fossil vertebrates (influencing the future application of finite element analysis to palaeontology), considerations of digestion and other aspects of metabolism, analysis of vertebral joint mechanics, and much more.  Additionally, he conducted pioneering analyses of allometric (size-related) scaling patterns in extant (and extinct; e.g. the moa) animals that continue to be cited today as valuable datasets with influential conclusions, by a wide array of studies including palaeontology—arguably, he helped compel palaeontologists to contribute more new data on extant animals via studies like these.

Neill Alexander did his MSc and PhD at Cambridge, followed by a DSc at the University of Wales, a Lecturer post at Bangor University and finally settling at the University of Leeds in 1969, where he remained until his retirement in 1999, although he maintains a Visiting Professorship there. I had the great pleasure of visiting him at his home in Leeds in 2014; a memory I will treasure forever, as I had the chance to chat 1-on-1 with him for some hours. He has been Secretary of the Zoological Society of London throughout most of the 1990s, President of the Society for Experimental Biology and International Society of Vertebrate Morphologists, long championing the fertile association of biomechanics with zoology, evolutionary biology and anatomy. More recently, he was a main editor of Proceedings of the Royal Society B for six years.

Many people I’ve spoken to about Neill before have stories of how he asked a single simple question at their talk, poster or peer review stage of publication, and how much that excited them to have attracted his sincere interest in their research. They tend to also speak of how that question cut to the core of their research and gave them a facepalm moment where they thought “why didn’t I think of that?”, but how he also asked that question in a nice way that didn’t disembowel them. I think that those recalling such experiences with Neill would agree that he is a professorial Professor: a model of senior mentorship in terms of how he can advise colleagues in a supportive, constructive and warmly authoritative, scholarly way. For a fairly recent example of his uniquely introspective and concise, see the little treasure “Hopes and Fears for Biomechanics”, a ~2005 lecture you can find here. I really like the “Fears” part. I share those fears- and maybe embody them at times…

My visit with RMcNeill Alexander in 2014.

My visit with RMcNeill Alexander in 2014.

Perhaps I have gushed enough, but I could go on! Professor RMcNeill Alexander, to summarise the prodigious extent of his research, is to biomechanics as Darwin is to biology as a whole. One could make a strong case for him being one of the most influential modern biologists. He is recognised for this by his status as a Fellow of the Royal Society (since 1987), and a CBE award, among many other accolades, accreditations and awards. And, if you’ve met him, you know that he is a gentle, humble, naturally curious and enthusiastic chap who instils a feeling of awe nonetheless, and still loves to talk about science and keeps abreast of developments in the field. And as the RVC is honouring Neill today, it is timely for me to honour him in this blog post. There can never be another giant in biomechanics like Alexander, and we should be thankful for the broad scientific shoulders upon which we are now, as a field, poised.

I hope others will chime in with comments below to share their own stories.