Feeds:
Posts
Comments

Posts Tagged ‘salamander’

I had a spare hour in Cambridge this weekend so I dared the crowds in the revamped UMZC’s upper floor. In my prior visit and post I’d experienced and described the lower floor, which is almost exclusively mammals. This “new” floor has everything else that is zoological (animal/Metazoa) and again is organized in an evolutionary context. And here is my photo tour as promised!

Inviting, soft lighting perfuses the exhibits from the entryway onwards.

All images can be clicked to mu-zoom in on them.

Stomach-Churning Rating: 5/10 for spirit animals, by which I mean dissected/ghostly pale whole specimens of animals in preservative fluids.

The exhibits are on a square balcony overlooking the lower floor, so you can get some nice views. It does make the balcony crowded when the museum is busy, so take that in mind if visiting. Strollers on this upper floor could be really difficult. But the ceiling is very tall so it is not cramped in a 3D sense. The lower floor is more spacious.

Like phylogenies? You got em! Tucked away at the beginning of each major group; not occupying huge valuable space or glaringly obvious like AMNH in NYC but still noticeable and useful. To me, it strikes a good balance; gives the necessary evolutionary context for the displayed specimens/taxa.

Introductory panels explain how names are given to specimens, how specimens are preserved and more.

The exhibits give due focus to research that the UMZC is doing or has been famous for. Hey I recognize that 3D tetrapod image in the lower left! 🙂

There is ample coverage of diversity throughout Metazoa but my camera tended to be drawn to the Vertebrata. Except in some instances like these.

Some larger chelicerates.

Some smaller, shadowy sea scorpion (eurypterid) fossils.

Watch here for more about ophiuroids (brittlestars) in not too long!

A BIG fish brain! Interesting!
Before I go through specimens in evolutionary “sequence”, I will feature another thing i really liked: lots of dissected spirit-specimens that show off cool anatomy/evolution/adaptation (and technical skills in anatomical preparation). Mostly heads; mostly fish.

Salps and other tunicates! Our closest non-vertebrate relatives- and some insight into how our head and gut came to be.

Salp-reflection.

Lamprey head: not hard to spot the commonalities with the salps; but now into Vertebrata.

Hagfish head: as a fellow cyclostome/agnathan, much like a lamprey but never forget the slime glands!

Shark head. Big fat jaws; all the better to bite prey with!

Lungfish (Protopterus) head showing the big crushing tooth plates (above).

Sturgeon vertebrae: tweak some agnathan/shark bits and here you are.

Worm (annelid) anatomy model, displaying some differences from/similarities to Vertebrata. (e.g. ventral vs. dorsal nerve cord; segmentation)

Dissected flipper from a small whale/other cetacean. Still five fingers, but other specializations make it work underwater.

Wonderful diversity of tooth and jaw forms in sharks, rays and relatives. I like this display a lot.

More of the above, but disparate fossil forms!

On with the evolutionary context! Woven throughout the displays of modern animals are numerous fossils, like these lovely placoderms (lineage interposed between agnathans, sharks and other jawed fish).

Goblin shark head.

I seem to always forget what ray-finned fish this is (I want to say wolffish? Quick Googling suggests maybe I am right), but see it often and like its impressive bitey-ness.

Bichir and snakefish; early ray-finned fish radiations.

Armoured and similar fish today.

Armoured fish of the past; some convergent evolution within ray-fins.

Convergence- and homology- of amphibious nature in fish is another evolutionary pattern exemplified here.

Gorgeous fossils of ray-finned fish lineages that arose after the Permian extinctions, then went extinct later in the Triassic.

Note the loooooong snout on this cornetfish but the actual jaws are just at the tip.

Flying fish– those ray-fins are versatile.

Diversity of unusual ray-finned fish, including deep-water and bottom-dwelling forms.

Can you find the low-slung jaws of a dory?

Recent and fossil perch lineage fish.

It’s hard to get far into talking about evolution without bringing up the adaptive radiation of east African cichlid fish, and UMZC researchers are keen on this topic too.

Lobe-fins! Everybody dance!

Rhizodonts & kin: reasons to get out of Devonian-Carboniferous waters.

A Cretaceous fossil coelacanth (skull); not extremely different from living ones’.

Let’s admire some fossil and modern lungfish skulls, shall we? Big platey things  (here, mainly looking at the palate) with lots of fusions of tiny bones on the skull roof.

Eusthenopteron fossils aren’t that uncommon but they are still great to see; and very important, because…

OK let’s stop messing around. The UMZC has one of the best displays of fossil stem-tetrapods in the world! And it should.

Another look at the pretty Acanthostega models.

Acanthostega vs. primate forelimb: so like us.

Ichthyostega parts keep Acanthostega company.

A closer look at the “Mr. Magic” Ichthyostega specimen, which takes some unpacking but is incredibly informative and was a mainstay of our 2012 model. Back of skull, left forelimb, and thorax (from left to right here).

Eucritta, another stem-tetrapod.

Closer look at Eucritta‘s skull.

Weird stem-tetrapod Crassigyrinus, which we’re still trying to figure out. It’s a fabulous specimen in terms of completeness, but messy “roadkill” with too many damn bones.

The large skull of Crassigyrinus, in right side view.

Early temnospondyl (true amphibian-line) skulls and neck.

Nectrideans or the boomerangs of the Palaeozoic.

Cool fossil frogs.

Giant Japanese salamander!

Fire salamanders: not as colourful as the real thing, but here revealing their reproductive cycle in beautiful detail.

Closeup of oviduct in above.

Sexual dimorphism in Leptodactylus frogs: the males have bulging upper arms to (I am assuming) help them hold onto females during amplexus (grasping in mating competitions).

Did I forget that Leptodactylus has big flanges on the humerus in males, to support those muscles? Seems so.

An early stem-amniote, Limnoscelis (close to mammals/reptiles divergence); cast.

Grand sea turtle skeleton.

One of my faves on display: a real pareiasaurian reptile skeleton, and you can get a good 3D look around it.

Details on above pareiasaurian.

Mammals are downstairs, but we’re reminded that they fit into tetrapod/amniote evolution nonetheless.

Let there be reptiles! And it was good.

Herps so good.  (slow worm, Gila monster, glass lizard)

A curator is Dr Jason Head so you bet Titanoboa is featured!

Crocodylia: impressive specimens chosen here.

It ain’t a museum without a statuesque ratite skeleton. (There are ~no non-avian dinosaurs here– for those, go to the Sedgwick Museum across the street, which has no shortage!)

Avian diversity takes off.

Glad to see a tinamou make an appearance. They get neglected too often in museums- uncommon and often seemingly unimpressive, but I’m a fan.

I still do not understand hoatzins; the “cuckoo” gone cuckoo.

Dodo parts (and Great Auk) near the entrance.

Wow. What an oilbird taxidermy display! :-O

There we have it. Phew! That’s a lot! And I left out a lot of inverts. This upper floor is stuffed with specimens; easier there because the specimens are smaller on average than on the lower floor. Little text-heavy signage is around. I give a thumbs-up to that– let people revel in the natural glory of what their eyes show them, and give them nuggets of info to leave them wanting more so they go find out.

Now it’s in your hands– go find out yourself how lovely this museum is! I’ve just given a taste.

Read Full Post »

Happy Darwin Day from the frozen tundra sunny but muddy, frosty lands of England! I bring you limb muscles as peace offerings on this auspicious day. Lots of limb muscles. And a new theme for future blog posts to follow up on: starting off my “Better Know A Muscle” (nod to Stephen Colbert; alternative link) series. My BKAM series intends to walk through the evolutionary history of the coolest (skeletal/striated) muscles. Chuck Darwin would not enjoy the inevitable blood in this photo-tour, but hopefully he’d like the evolution. Off we go, in search of better knowledge via an evolutionary perspective!

There is, inarguably, no cooler muscle than M. caudofemoralis longus, or CFL for short. It includes the largest limb muscles of any land animal, and it’s a strange muscle that confused anatomists for many years– was it a muscle of the body (an axial or “extrinsic” limb muscle, directly related to the segmented vertebral column) or of the limbs (an “abaxial” muscle, developing with the other limb muscles from specific regions of the paraxial mesoderm/myotome, not branching off from the axial muscles)? Developmental biologists and anatomists answered that conclusively over the past century: the CFL is a limb muscle, not some muscle that lost its way from the vertebral column and ended up stranded on the hindlimb.

The CFL is also a muscle that we know a fair amount about in terms of its fossil record and function, as you may know if you’re a dinosaur fan, and as I will quickly review later. We know enough about it that we can even dare to speculate if organisms on other planets would have it. Well, sort of…

Stomach-Churning Rating: 8/10. Lots of meaty, bloody, gooey goodness, on and on, for numerous species. This is an anatomy post for those with an appetite for raw morphology.

Let’s start from a strong (and non-gooey) vantage point, to which we shall return. The CFL in crocodiles and most other groups is (and long was) a large muscle extending from much of the front half or so of the tail to the back of the femur (thigh bone), as shown here:

Julia Molnar's fabulous illustration of Alligator's limb muscles, from our 2014 paper in Journal of Anatomy.

Julia Molnar’s fabulous illustration of Alligator‘s limb muscles, from our 2014 paper in Journal of Anatomy. Note the CFL in blue at the bottom right.

As the drawing shows, the CFL has a friend: the CFB. The CFB is a shorter, stumpier version of the CFL restricted to the tail’s base, near the hip. The “B” in its name means “brevis”, or runty. It gets much less respect than its friend the CFL. Pity the poor CFB.

But look closer at the CFL in the drawing above and you’ll see a thin blue tendon extending past the knee to the outer side of the lower leg. This is the famed(?) “tendon of Sutton“, or secondary tendon of the CFL. So the CFL has two insertions, one on the femur and one (indirectly) onto the shank. More about that later.

Together, we can talk about these two muscles (CFL and CFB) as the caudofemoralis (CF) group, and the name is nice because it describes how they run from the tail (“caudo”) to the femur (“femoralis”). Mammal anatomists were late to this party and gave mammal muscles stupidly unhelpful names like “gluteus” or “vastus” or “babalooey”. Thanks.

But enough abstract drawings, even if they rock, and enough nomenclature. Here is the whopping big CFL muscle of a real crocodile:

Huge Nile crocodile, but a relatively small CFL.

Huge Nile crocodile, but a relatively small CFL.

Bigger crocs have smaller legs and muscles.

Bigger crocs have smaller legs and thus smaller leg muscles, relatively speaking. CFL at the top, curving to the left.

The giant Nile croc's CFL muscle removed for measurements.

The giant Nile croc’s CFL muscle removed for measurements. 2.35 kg of muscle! Not shabby for a 278 kg animal.

However, maybe crocodile and other archosaur CFL muscles are not “average” for leggy vertebrates? We can’t tell unless we take an evolutionary tack to the question.

Where did the CFL come from, you may ask? Ahh, that is shrouded in the fin-limb transition‘s mysteries. Living amphibians such as salamanders have at least one CF muscle, so a clear predecessor to the CFL (and maybe CFB) was present before reptiles scampered onto the scene.

But going further back through the CF muscles’ history, into lobe-finned fish, becomes very hard because those fish (today) have so few fin muscles that, in our distant fishy ancestors, would have given rise eventually to the CF and other muscle groups. With many land animals having 30+ hindlimb muscles, and fish having 2-8 or so, there obviously was an increase in the number of muscles as limbs evolved from fins. And because a limb has to do lots of difficult three-dimensional things on land while coping with gravity, more muscles to enable that complex control surely were needed.

OK, so there were CF muscles early in tetrapod history, presumably, anchored on that big, round fleshy tail that they evolved from their thin, finned fishy one — but what happened next? Lizards give us some clues, and their CFL muscles aren’t all that different from crocodiles, so the CFL’s massive size and secondary “tendon of Sutton” seems to be a reptile thing, at least.

Courtesy of Emma Schachner, a large varanid lizard's very freshly preserved CFL and other hindlimb muscles.

Courtesy of Emma Schachner, a large varanid lizard’s very freshly preserved CFL and other hindlimb muscles.

Courtesy of Emma Schachner, zoomed in on the tendons and insertions of the CFL muscle and others.

Courtesy of Emma Schachner, zoomed in on the tendons and insertions of the CFL muscle and others. Beautiful anatomy there!

Looking up at the belly of a basilisk lizard and its dissected right leg, with the end of the CFL labelled.

Looking up at the belly of a basilisk lizard and its dissected right leg, with the end of the CFL labelled. It’s not ideally dissected here, but it is present.

An unspecified iguanid(?) lizard, probably a juvenile Iguana iguana, dissected and showing its CFL muscle at its end. The muscle would extemd about halfway down the tail, though.

An unspecified iguanid(?) lizard, probably a juvenile Iguana iguana, dissected to reveal its CFL muscle near its attachment to the femur. The muscle would extend further, about halfway down the tail, though.

Let’s return to crocodiles, for one because they are so flippin’ cool, and for another because they give a segue into archosaurs, especially dinosaurs, and thence birds:

A moderate-sized (45kg) Nile crocodile with its CFL muscle proudly displayed.

A moderate-sized (45kg) Nile crocodile with its CFL muscle proudly displayed. Note the healthy sheath of fat (cut here) around the CFL.

American alligator's CFL dominates the photo. Photo by Vivian Allen.

American alligator’s CFL dominates the photo [by Vivian Allen].

Black caiman, Melanosuchus, showing off its CFL muscle (pink "steak" in the middle of the tail near the leg).

Black caiman, Melanosuchus, showing off its CFL muscle (pink “steak” in the middle of the tail near the leg), underneath all that dark armour and fatty superficial musculature.

A closer look at the black caiman's thigh and CFL muscle.

A closer look at the black caiman’s thigh and CFL muscle.

Like I hinted above, crocodiles (and the anatomy of the CFL they share with lizards and some other tetrapods) open a window into the evolution of unusual tail-to-thigh muscles and locomotor behaviours in tetrapod vertebrates.

Thanks in large part to Steve Gatesy’s groundbreaking work in the 1990s on the CFL muscle, we understand now how it works in living reptiles like crocodiles. It mainly serves to retract the femur (extend the hip joint), drawing the leg backwards. This also helps support the weight of the animal while the foot is on the ground, and power the animal forwards. So we call the CFL a “stance phase muscle”, referring to how it mainly plays a role during ground contact and resisting gravity, rather than swinging the leg forwards (protracting the limb; i.e. as a “swing phase muscle”).

The “tendon of Sutton” probably helps to begin retracting the shank once the thigh has moved forward enough, facilitating the switch from stance to swing phase, but someone really needs to study that question more someday.

And thanks again to that same body of work by Gatesy (and some others too), we also understand how the CFL’s anatomy relates to the underlying anatomy of the skeleton. There is a large space for the CFL to originate from on the bottom of the tail vertebrae, and a honking big crest (the fourth trochanter) on the femur in most reptiles that serves as the major attachment point, from which the thin “tendon of Sutton” extends down past the knee.

Femur bones (left side) from an adult ostrich (Left) and Nile crocodile (Right).

Femur bones (left side; rear view) from an adult ostrich (left) and Nile crocodile (right). Appropriate scale bar is appropriate. The fourth trochanter for the CFL is visible in the crocodile almost midway down the femur. Little is left of it in the ostrich but there is a bumpy little muscle scar in almost the same region as the fourth trochanter, and this is where the same muscle (often called the CFC; but it is basically just a small CFL) attaches.

That relationship of the CFL’s muscular anatomy and the underlying skeleton’s anatomy helps us a lot! Now we can begin to look at extinct relatives of crocodiles; members of the archosaur group that includes dinosaurs (which today we consider to include birds, too), and things get even more interesting! The “tendon of Sutton”, hinted at by a “pendant” part of the fourth trochanter that points down toward the knee, seems to go away multiple times within dinosaurs. Bye bye! Then plenty more happens:

A large duckbill dinosaur's left leg, with a red line drawn in showing roughly where the CFL would be running, to end up at the fourth trochanter. Many Mesozoic dinosaurs have skeletal anatomy that indicates a similar CFL muscle.

A large duckbill dinosaur’s left leg, with a red line drawn in showing roughly where the CFL would be running, to end up at the fourth trochanter. Many Mesozoic dinosaurs have skeletal anatomy that indicates a similar CFL muscle.

We can even go so far as to reconstruct the 3D anatomy of the CFL in a dinosaur such as T. rex ("Sue" specimen here; from Julia Molnar's awesome illustration in our 2011 paper), with a fair degree of confidence.

We can even go so far as to reconstruct the 3D anatomy of the CFL in a dinosaur such as T. rex (“Sue” specimen here; from Julia Molnar’s awesome illustration as part of our 2011 paper), with a fair degree of confidence. >180kg steak, anyone?

As we approach birds along the dinosaur lineage, the tail gets smaller and so does the fourth trochanter and thus so must the CFL muscle, until we’re left with just a little flap of muscle, at best. In concert, the hindlimbs get more crouched, the forelimbs get larger, flight evolves and voila! An explosion of modern bird species!

Ozburt (72)

Left femur of an ostrich in side view (hip is toward the right side) showing many muscles that attach around the knee (on the left), then the thin strap of CF muscle (barely visible; 2nd from the right) clinging near the midshaft of the femur.

Another adult ostrich's CF muscle complex, removed for study.

Another adult ostrich’s CF muscle complex, removed for study. Not enough ostrich myology for you yet? Plenty more in this old post! Or this one! Or this one… hey maybe I need to write less about ostriches? The CF muscle complex looks beefy but it’s no bigger than any other of the main hindlimb muscles, unlike the CFL in a crocodile or lizard, which puts everything else to shame!

STILL not enough ostrich for you yet? Take a tour of the major hindlimb muscles in this video:

And check out the limited mobility of the hip joint/femur here. No need for much femur motion when you’re not using your hip muscles as much to drive you forwards:

But I must move on… to the remainder of avian diversity! In just a few photos… Although the CF muscles are lost in numerous bird species, they tend to hang around and just remain a long, thin, unprepossessing muscle:

Chicken's right leg in side view. CFC (equivalent of CFL) muscle outlined and labelled.

Chicken’s right leg in side view. CFC muscle (equivalent of CFL; the ancestral CFB is confusingly called the CFP in birds, as it entirely resides on the pelvis) outlined and labelled.

A jay (species?) dissected to show some of the major leg muscles, including the CF. Photo by Vivian Allen.

A jay (species? I forget) dissected to show some of the major leg muscles, including the CFL-equivalent muscle; again, smallish. [Photo by Vivian Allen]

Finally, what’s up with mammals‘ tail-to-thigh CF-y muscles? Not much. Again, as in birds: smaller tail and/or femur, smaller CF muscles. Mammals instead depend more on their hamstring and gluteal muscles to support and propel themselves forward.

But many mammals do still have something that is either called the M. caudofemoralis or is likely the same thing, albeit almost always fairly modest in size. This evolutionary reduction of the CF muscle along the mammal (synapsid) lineage hasn’t gotten nearly as much attention as that given to the dinosaur/bird lineage’s CFL. Somebody should give it a thoroughly modern phylogenetic what-for! Science the shit outta that caudofemoralis…

Yet, oddly, to give one apparent counter-example, cats (felids) have, probably secondarily, beefed up their CF muscle a bit:

Cats have a pretty large CF muscle in general, and this jaguar is no exception! But mammals still tend to have fairly wimpy tails and thus CF muscles, or they even lose them (e.g. us?).

Cats have a pretty large CF muscle in general, and this jaguar is no exception! But mammals still tend to have fairly wimpy tails and thus CF muscles, or they even lose them (e.g. us?). [photo by Andrew Cuff, I think]

In summary, here’s what happened (click to embeefen):

Better Know A Muscle: The Evolution of M. caudofemoralis (longus)

Better Know A Muscle: the evolution of M. caudofemoralis (longus).

I hope you enjoyed the first BKAM episode!
I am willing to hear requests for future ones… M. pectoralis (major/profundus) is a serious contender.

P.S. It was Freezermas this week! I forgot to mention that. But this post counts as my Freezermas post for 2016; it’s all I can manage. Old Freezermas posts are here.

Read Full Post »

Construction of the Phyletisches Museum in Jena, Germany began on Goethe’s birthday on August 28, 1907. The Art Nouveau-styled museum was devised by the great evolutionary biologist, embryologist and artist/howthefuckdoyousummarizehowcoolhewas Ernst Haeckel, who by that time had earned fame in many areas of research (and art), including coining the terms ontogeny (the pattern of development of an organism during its lifetime) and phylogeny (the pattern of evolution of lineages of organisms through time) which feature prominently in the building’s design and exhibits (notice them intertwined in the tree motif below, on the front of the museum). Ontogeny and phylogeny, and the flamboyant artistic sensibility that Haeckel’s work exuded, persist as themes in the museum exhibits themselves. Haeckel also came up with other popular words such as Darwinism and ecology, stem cell, and so on… yeah the dude kept busy.

Cavorting frogs from Haeckel's masterpiece Kunstformen der Natur (1904).

Cavorting frogs from Haeckel’s masterpiece Kunstformen der Natur (1904).

I first visited the Phyletisches Museum about 10 years ago, then again this August. Here are the sights from my latest visit: a whirlwind ~20 minute tour of the museum before we had to drive off to far-flung Wetzlar. All images are click-tastic for embiggenness.

Stomach-Churning Rating: 3/10 for some preserved specimens. And art nouveau.

Willkommen!

Willkommen!

Frog ontogeny, illustrated with gorgeous handmade ?resin? models.

Frog ontogeny, illustrated with gorgeous handmade ?resin? models.

Fish phylogeny, illustrated with lovely artistry.

Phylogeny of Deuterostomia (various wormy things, echinoderms, fish and us), illustrated with lovely artistry.

Phylogeny of fish and tetrapods.

Phylogeny of fish and tetrapods.

Slice of fossil fish diversity.

Slice of fossil fish diversity.

Plenty of chondryichthyan jaws and bodies.

Plenty of chondrichthyan jaws/chondrocrania, teeth and bodies.

Awesome model of a Gulper eel (Saccopharyngiformes).

Awesome model of a Gulper Eel — or, evocatively, “Sackmaul” auf Deutsch (Saccopharyngiformes).

Lobe-finned fishes (Sarcopterygii)- great assortment.

Lobe-finned fishes (Sarcopterygii)- great assortment including a fossil coelacanth.

Lungfish body/model and skeleton.

Lungfish body and skeleton.

Coelacanth!

Coelacanth!

Coelacanth staredown!

Coelacanth staredown!

Fire salamander! We love em, and the museum had several on display- given that we were studying them with x-rays, seeing the skeleton and body together here in this nice display was a pleasant surprise.

On into tetrapods– a Fire Salamander (Salamandra salamandra)! We love ’em, and the museum had several on display- given that we were studying them with x-rays, seeing the skeleton and body together here in this nice display was a pleasant surprise.

A tortoise shell and skeleton, with a goofball inspecting it.

A tortoise shell and skeleton, with a goofball inspecting it.

In a subtle nod to recurrent themes in evolution, the streamlined bodies of an ichthyosaur and cetacean shown in the main stairwell of the museum, illustrating convergent evolution to swimming locomotor adaptations.

In a subtle nod to recurrent themes in evolution, the streamlined bodies of an ichthyosaur and cetacean shown in the main stairwell of the museum, illustrating convergent evolution to swimming adaptations.

Phylogeny of reptiles, including archosaurs (crocs+birds).

Phylogeny of reptiles, including archosaurs (crocs+birds).

Gnarly model of an Archaeopteryx looks over a cast of the Berlin specimen, and a fellow archosaur (crocodile).

Gnarly model of an Archaeopteryx looks over a cast of the Berlin specimen, and a fellow archosaur (crocodile). The only extinct dinosaur on exhibit!

Kiwi considers the differences in modern bird palates: palaeognathous like it and fellow ratites/tinamous (left), and neognathous like most living birds.

Kiwi considers the differences in modern bird palates: palaeognathous like it and fellow ratites/tinamous (left), and neognathous like most living birds.

Echidna skeleton. I can't get enough of these!

Echidna skeleton. I can’t get enough of these!

Skulls of dugong (above) and manatee (below).

Skulls of dugong (above) and manatee (below), Sirenia (seacows) closely related to elephants.

Fetal manatee. Awww.

Fetal manatee. Awww.

Adult Caribbean manatee, showing thoracic dissection.

Adult Caribbean manatee, showing thoracic dissection.

Hyraxes, which Prof. Martin Fischer, longtime curator of the Phyletisches Museum, has studied for many years.  Rodent-like elephant relatives.

Hyraxes, which Prof. Martin Fischer, longtime curator of the Phyletisches Museum, has studied for many years. Rodent-like elephant cousins.

Old exhibit at the Phyletisches Museum, now gone: Forelimbs of an elephant posed in the same postures actually measured in African elephants, for the instant of foot touchdown (left pic) and liftoff (right pic). Involving data that we published in 2008!

Old exhibit at the Phyletisches Museum, now gone: Forelimbs of an elephant posed in the same postures actually measured in African elephants, for the instant of foot touchdown (left pic) and liftoff (right pic). Involving data that we published in 2008!

Gorilla see, gorilla do. Notice "bent hip, bent knee" vs. "upright modern human" hindlimb postures in the two non-skeletal hominids.

Eek, primates! Gorilla see, gorilla do. Notice the primitive “bent hip, bent knee” vs. the advanced “upright modern human” hindlimb postures in the two non-skeletal hominids.

Phylogeny of select mammals, including the hippo-whale clade.

Phylogeny of artiodactyl (even-toed) mammals, including the hippo-whale clade.

Hand (manus) of the early stem-whale Ambulocetus.

Hand (manus) of the early stem-whale Ambulocetus.

Carved shoulderblade (scapula) of a bowhead whale (Balaena mysticetus), which apparently Goethe owned. Quite a relic!

Carved shoulderblade (scapula) of a bowhead whale (Balaena mysticetus), which apparently Goethe owned (click to emwhalen and read the fine print). Quite a relic!

One of Haeckel's residences. There is also a well-preserved house of his that one can visit, but I didn't make it there.

One of Haeckel’s residences, across the street from the museum. There is also a well-preserved house of his that one can visit, but I didn’t make it there. I heard it’s pretty cool.

Jena is tucked away in a valley in former East Germany, with no local airport for easy access- but get to Leipzig and take a 1.25 hour train ride and you’re there. Worth a trip! This is where not just ontogeny and phylogeny were “born”, but also morphology as a modern, rigorous discipline. Huge respect is due to Jena, and to Haeckel, whose quotable quotes and influential research still resonate today, in science as well as in art.

Read Full Post »

What a week!

My team had a new technician arrive, Kyle Chadwick from Uni. Virginia, and NSF Postdoctoral Research Fellow, Dr. Ashley Heers (see here for an example  of new stuff she’s starting here at the RVC!), started working with me at the RVC, and then these guys showed up…

Salamanders!

Woo hoo!

First a tiger salamander (Ambystoma) paid a visit, for filming an episode of the Windfall Films/PBS documentary “Your Inner Fish” (a la the famous book):

So cute! Tiger salamander, soon to be a TV celebrity.

So cute! Tiger salamander, soon to be a TV celebrity.

Dr. Stephanie Pierce (who was also a coauthor on a great open access croc paper in Proc Roy Soc B this week) was filmed with Prof. Jenny Clack to recap some of our past work on tetrapod locomotion. Watch out for the 3-part series!

And that gorgeous salamander was a star performer in strutting his stuff for the camera to demonstrate the locomotion of modern tetrapods, including some lovely slo-mo footage from our lab cameras:

(if that’s too slow for you, try the normal-speed footage. I’ll admit, salamanders don’t really need slo-mo video for normal walking, but I like it)

So cool!

But then we got a special package… with three frozen fire salamanders (Salamandra salamandra) from colleagues in Germany!

Three new occupants of the freezers, for planning our studies of salamander locomotion

Three new occupants of the freezers, for planning our studies of salamander locomotion

This marks the start of an exciting new period in my team’s work in the lab. I’ve always liked salamanders and newts, and we’ve scanned and modelled plenty (e.g. this old post), but now we’re going to work with live fire salamanders (a first for me)! We are using the dead ones to plan the new studies with the live ones– these new studies will involve lots of high speed videos and force platform analysis (as shown above), in conjunction with XROMM (biplanar fluoroscopy/3D skeletal motion analysis) and other techniques including computer simulations. We got initial approval this week to work with these salamanders, and found a reputable source this week too, so it was definitely Salamander Week in my group!

This research all will feed into our upcoming studies of extinct tetrapods: we’re using salamanders to figure out how salamanders move and what limits their speed and gait, and then we’re using the same sorts of computer tools to try to estimate how extinct tetrapods may have moved and how locomotion evolved, in much more specific detail than our prior work had done, which was mainly about using 3D reconstructions of anatomy to show what those animals could not do. More about the project here.

Watch this space for more scampering salamanders!

UPDATE: And here’s one! Not quite scampering, but…

Setting up our two fluoroscopes for a test run of our gait studies-- but with one of the deceased salamanders. Gotta get a good image  before any live animal work!

Setting up our two fluoroscopes for a test run of our gait studies– but with one of the deceased salamanders. Gotta get good images before any live animal work begins!

An example of the kind of footage we’re aiming for (single 2D fluoroscope view from Nadja Schilling’s team’s research; see XROMM website for more details on the methodology)

UPDATE 2:

I did a CT scan with a normal medical grade CT scanner at the highest resolution we can manage (0.625 mm slices). Check out the results below, which amuse me:

Looks like a toy; too crude resolution. But we can see major structures, and we can very nicely see the “microchip” (which looks HUGE) that was placed in this animal’s back when in captivity, and then another structure is visible near the pelvis which might be another chip or else remains of some food, pathology, or a really odd pelvis– I am not totally sure!

So this is why we tend to use microCT, which can go down to as low as ~5 micron resolution, to get 3D anatomy of animals this small. It’s no surprise to me, but it is fun to see how far we could push our normal CT machine. The results aren’t horrid but wouldn’t have much scientific value for us. They did confirm for us that this specimen is heavily ossified, so the faint images of bone that we are getting in our x-ray fluoroscopes (above) are due to something going wrong with our camera system, not the animal’s immature skeleton. Stay tuned for more updates as the science happens!

UPDATE 3:

20 wonderful adult Fire Salamanders have joined our team and are relaxing over the coming week before we start taking them for walks. Here is one exploring its new home:

Fire salamanderUPDATE 4:

August 11-15, 2014 we are in Jena, Germany using their fancy biplanar radiography system (“x-ray video”) to study our salamanders, at last! Follow the tweets starting here, for more information as it happened! https://twitter.com/JohnRHutchinson/status/500187568416518144

and this video of “Jabba” the corpulent salamander walking-

with a top view, too-

Read Full Post »

I’m gearing up for a major post with lots of striking pictures from The Freezers, but to tide you over, here’s a simple movie from one of my CT scans of a Hellbender salamander (Cryptobranchus alleganiensis; with a supportive rod down its GI tract; this was a museum specimen that apparently needed the rod to keep its body straight). We’ve scanned loads of salamanders and other cool critters for our NERC-funded project on the evolution of terrestrial locomotion in the earliest tetrapods (more about that coming up in a future post, as we have some Big News from that study!); this is just one of them.

The huge gaps between limb joints indicate extensive articular cartilage (typical of many aquatic animals, especially some amphibians) and would make a sauropod jealous. The relatively homogenous vertebral column, without much differentiation from head to tail, is also striking, contrasting even with that observed in animals with vaguely similar locomotor styles such as lizards; not to mention mammals, which take that regionalization to an extreme. Also, like most (all?) salamanders, this one has almost no ribs — this is a secondary reduction during their evolution; early fossil tetrapods had nice big ribs. But those ribs aren’t useless (they play a role in moving and breathing), and at least one caudate (member of the broader salamander group) has evolved a very cool use for them!

Read Full Post »