Feeds:
Posts
Comments

Posts Tagged ‘dem bones’

This week was a great week for me and giant dinosaurs in many ways, so I’m sharing that experience via photos and a bit of backstory. I hope you like it.

Stomach-Churning Rating: 1/10. Big birds and bones but no barfing.

First, I attended the filming of a new documentary, “T. rex Autopsy” (due for release on 7 June on NatGeo TV, just in time to steal the thunder of get you excited for Jurassic World), on the edge of London. I’m allowed to post these two photos of it. Expect much, much more information later– and I think you will like that information when it comes! Not quite a 50′ tall bird, but… So. Damn. Cool.

trex-autopsy2

trex-autopsy1

Second, my team and I dissected a big animal I’ve mentioned here before. For various reasons, I won’t/can’t post images or details of it right now, but I hope to soon. It’s not a dinosaur, but it was giant as its kind goes, so I’m wedging it in here.

Third, and this is the main impetus for my post, I finally got to see the giant chicken! No, not this one that I recall from my childhood…

hoboken

But this one! A 50’/13m tall chicken made by teacher Ben Frimet’s team of students and teachers at the City of London Academy!

Shortly after my first encounter.

Shortly after my first encounter. I’m still in a state of awed shock. And shadow.

The megachicken was unveiled at a “Chickenfest” event celebrating the sculpture’s completion. Chickenfest also prominently involved members of the “Chicken Coop” team who have drawn together scientists, humanities scholars, artists and more to investigate “Cultural & Scientific Perceptions of Human-Chicken Interactions” — more details here. Their theme helped unite the event’s various displays and lectures as well as some of the City of London Academy’s teaching topics, which inspired students to look at chickens from many angles. The event was so fun and truly integrative that it had me clucking with joy, but the anatomically accurate giant chicken art piece stole the show (as intended). Enjoy the photo tour below.

Giant Chicken 5

Pelvic/thigh region! (no patella, but hey)

Giant Chicken 6

Great views from up to 3 storeys around it.

Giant Chicken 3 Giant Chicken 4 Giant Chicken 7 Giant Chicken 8 Giant Chicken 9

Little chickens made of fast-food forks and stuff.

Little chickens made of fast-food forks and stuff. Very clever.

Chicken bones

One of our research chickens, a 30-day-old broiler, skeletonized by the Chicken Coop team and brought to the event. Chunky and funky!

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira-Neves) presented a stall with motion capture and chicken bones, like this fun identification display.

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira Neves) presented a stall with motion capture demos and chicken bones, like this fun identification display.

What will happen to that giant chicken art piece? This is yet to be determined, and was the question asked of the lecture panel (including me, who gave a lame answer involving King’s Cross’s birdcage). It was unanimous that it must not be destroyed– as long as it does not go on a destructive rampage through London…

One of my favourite films of my teenage years, Beastmaster, lends me a phrase I’ll throw out here like a razor-edged boomerang-thing: “Life is a circle. We will meet again.” And so, at the Chickenfest event, past and present worlds collided. I happened to be there presenting a talk just before Luis Rey. Almost exactly 13 years ago, Luis had done this classic T. rex vs. giant chicken race for my “T. rex was not a fast runner” paper in Nature. He likewise has blogged about the Chickenfest event, so check that out!

T. rex vs. chicken race, by Luis Rey

Coincidentally, there was ANOTHER 50′ tall bird placed not far from that giant chicken in southeast London this week, for a very different reason- a huge Norwegian Blue parrot in celebration of the Monty Python reunion! And I’ve been a Monty Python fan since age ~11, so that rocks my world two times over.

IMAGE: FLICKR USER TAYLOR HERRING

IMAGE: FLICKR USER TAYLOR HERRING

Two giant birds in London in one week. It doesn’t get any better than that– unless there were three such birds– if I missed one, chime in in the Comments!

(Edit: British friends tell me I must refer to an Alan Partridge skit here, so I am doing so. I know when to do as I’m told.)

Read Full Post »

I hinted at another post in last round, and here I deliver. (The “amazeballs” in the title is a running joke with our Xmas guests here in England, but it applies to the subject of these images, too… which will be the subject of a future blog post involving a dissection of the subject!)

This will end the 2014 round of Mystery Anatomy. What 2015 will bring, I am not sure, but here we have 15 images for my 15th mystery CT post and 2015 around the corner.

I do have a new, fun regular anatomy post idea planned for 2015 but I’ll explain that later.

Stomach-Churning Rating: 2/10; digital images; the cadaver is gutted but I am chuffed.

Mystery Anatomy 2014same rules as before.

Identify (1) the animal shown in the 15 slices, to species level (max. 5 pts), and then the major features (anatomical regions) evident in as many of the 15 slices as you can; details help (max. 5 pts for thoroughness and accuracy). 

Difficulty: No scale, sort of. Otherwise, pretty easy.

Answers will come on New Year’s Day, to ease your hangovers (or encourage vomiting).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

MysteryCT15(15)

15

Onward!

Read Full Post »

Construction of the Phyletisches Museum in Jena, Germany began on Goethe’s birthday on August 28, 1907. The Art Nouveau-styled museum was devised by the great evolutionary biologist, embryologist and artist/howthefuckdoyousummarizehowcoolhewas Ernst Haeckel, who by that time had earned fame in many areas of research (and art), including coining the terms ontogeny (the pattern of development of an organism during its lifetime) and phylogeny (the pattern of evolution of lineages of organisms through time) which feature prominently in the building’s design and exhibits (notice them intertwined in the tree motif below, on the front of the museum). Ontogeny and phylogeny, and the flamboyant artistic sensibility that Haeckel’s work exuded, persist as themes in the museum exhibits themselves. Haeckel also came up with other popular words such as Darwinism and ecology, stem cell, and so on… yeah the dude kept busy.

Cavorting frogs from Haeckel's masterpiece Kunstformen der Natur (1904).

Cavorting frogs from Haeckel’s masterpiece Kunstformen der Natur (1904).

I first visited the Phyletisches Museum about 10 years ago, then again this August. Here are the sights from my latest visit: a whirlwind ~20 minute tour of the museum before we had to drive off to far-flung Wetzlar. All images are click-tastic for embiggenness.

Stomach-Churning Rating: 3/10 for some preserved specimens. And art nouveau.

Willkommen!

Willkommen!

Frog ontogeny, illustrated with gorgeous handmade ?resin? models.

Frog ontogeny, illustrated with gorgeous handmade ?resin? models.

Fish phylogeny, illustrated with lovely artistry.

Phylogeny of Deuterostomia (various wormy things, echinoderms, fish and us), illustrated with lovely artistry.

Phylogeny of fish and tetrapods.

Phylogeny of fish and tetrapods.

Slice of fossil fish diversity.

Slice of fossil fish diversity.

Plenty of chondryichthyan jaws and bodies.

Plenty of chondrichthyan jaws/chondrocrania, teeth and bodies.

Awesome model of a Gulper eel (Saccopharyngiformes).

Awesome model of a Gulper Eel — or, evocatively, “Sackmaul” auf Deutsch (Saccopharyngiformes).

Lobe-finned fishes (Sarcopterygii)- great assortment.

Lobe-finned fishes (Sarcopterygii)- great assortment including a fossil coelacanth.

Lungfish body/model and skeleton.

Lungfish body and skeleton.

Coelacanth!

Coelacanth!

Coelacanth staredown!

Coelacanth staredown!

Fire salamander! We love em, and the museum had several on display- given that we were studying them with x-rays, seeing the skeleton and body together here in this nice display was a pleasant surprise.

On into tetrapods– a Fire Salamander (Salamandra salamandra)! We love ’em, and the museum had several on display- given that we were studying them with x-rays, seeing the skeleton and body together here in this nice display was a pleasant surprise.

A tortoise shell and skeleton, with a goofball inspecting it.

A tortoise shell and skeleton, with a goofball inspecting it.

In a subtle nod to recurrent themes in evolution, the streamlined bodies of an ichthyosaur and cetacean shown in the main stairwell of the museum, illustrating convergent evolution to swimming locomotor adaptations.

In a subtle nod to recurrent themes in evolution, the streamlined bodies of an ichthyosaur and cetacean shown in the main stairwell of the museum, illustrating convergent evolution to swimming adaptations.

Phylogeny of reptiles, including archosaurs (crocs+birds).

Phylogeny of reptiles, including archosaurs (crocs+birds).

Gnarly model of an Archaeopteryx looks over a cast of the Berlin specimen, and a fellow archosaur (crocodile).

Gnarly model of an Archaeopteryx looks over a cast of the Berlin specimen, and a fellow archosaur (crocodile). The only extinct dinosaur on exhibit!

Kiwi considers the differences in modern bird palates: palaeognathous like it and fellow ratites/tinamous (left), and neognathous like most living birds.

Kiwi considers the differences in modern bird palates: palaeognathous like it and fellow ratites/tinamous (left), and neognathous like most living birds.

Echidna skeleton. I can't get enough of these!

Echidna skeleton. I can’t get enough of these!

Skulls of dugong (above) and manatee (below).

Skulls of dugong (above) and manatee (below), Sirenia (seacows) closely related to elephants.

Fetal manatee. Awww.

Fetal manatee. Awww.

Adult Caribbean manatee, showing thoracic dissection.

Adult Caribbean manatee, showing thoracic dissection.

Hyraxes, which Prof. Martin Fischer, longtime curator of the Phyletisches Museum, has studied for many years.  Rodent-like elephant relatives.

Hyraxes, which Prof. Martin Fischer, longtime curator of the Phyletisches Museum, has studied for many years. Rodent-like elephant cousins.

Old exhibit at the Phyletisches Museum, now gone: Forelimbs of an elephant posed in the same postures actually measured in African elephants, for the instant of foot touchdown (left pic) and liftoff (right pic). Involving data that we published in 2008!

Old exhibit at the Phyletisches Museum, now gone: Forelimbs of an elephant posed in the same postures actually measured in African elephants, for the instant of foot touchdown (left pic) and liftoff (right pic). Involving data that we published in 2008!

Gorilla see, gorilla do. Notice "bent hip, bent knee" vs. "upright modern human" hindlimb postures in the two non-skeletal hominids.

Eek, primates! Gorilla see, gorilla do. Notice the primitive “bent hip, bent knee” vs. the advanced “upright modern human” hindlimb postures in the two non-skeletal hominids.

Phylogeny of select mammals, including the hippo-whale clade.

Phylogeny of artiodactyl (even-toed) mammals, including the hippo-whale clade.

Hand (manus) of the early stem-whale Ambulocetus.

Hand (manus) of the early stem-whale Ambulocetus.

Carved shoulderblade (scapula) of a bowhead whale (Balaena mysticetus), which apparently Goethe owned. Quite a relic!

Carved shoulderblade (scapula) of a bowhead whale (Balaena mysticetus), which apparently Goethe owned (click to emwhalen and read the fine print). Quite a relic!

One of Haeckel's residences. There is also a well-preserved house of his that one can visit, but I didn't make it there.

One of Haeckel’s residences, across the street from the museum. There is also a well-preserved house of his that one can visit, but I didn’t make it there. I heard it’s pretty cool.

Jena is tucked away in a valley in former East Germany, with no local airport for easy access- but get to Leipzig and take a 1.25 hour train ride and you’re there. Worth a trip! This is where not just ontogeny and phylogeny were “born”, but also morphology as a modern, rigorous discipline. Huge respect is due to Jena, and to Haeckel, whose quotable quotes and influential research still resonate today, in science as well as in art.

Read Full Post »

(John: here’s a guest post from my former PhD student, soon to be 100% legit PhD, Dr., and all that jazz, Julia Molnar!)

This is my first guest post, but I have been avidly following what’s in John’s freezer (and the blog too) for quite a while. I joined the lab in 2009 and left a month ago on the bittersweet occasion of surviving my PhD viva (oral exam/defense), so I’d like to take a moment here to thank John and the Structure & Motion Lab for a great 4 years!

Moving on to freezer-related matters; specifically, a bunch of frozen crocodile spines. It was late 2011, and the reason for the spines in John’s freezer was that John, Stephanie Pierce, and I were trying to find out more about crocodile locomotion. This was anticipated to become my first major, first-author research publication (but see my Palaeontologia Electronica paper on a related subject), and I was about to find out that these things seldom go as planned; for example, the article would not be published for more than three years (the research took a long time!). Before telling the story of how it lurched and stumbled toward eventual publication, I’ll give you some background on the project.

Stomach-Churning Rating: 3/10; x-ray of dead bits and nothing much worse.


A stumbly sort-of-bounding crocodile. They can do better.

First of all, why crocodiles? For one thing, they’re large, semi-terrestrial animals, but they use more sprawling postures than typical mammals. Along with alligators and gharials, they are the only living representatives of Crocodylomorpha, a 200+ million year-old lineage that includes wolf-like terrestrial carnivores, fish-like giants with flippers and a tail fin, even armored armadillo-like burrowers. Finally, crocodiles are interesting in their own right because they use a wide variety of gaits, including bounding and galloping, which are otherwise known only in mammals.

Nile croc

Nile crocodile skeletal anatomy

OK, so why spines? Understanding how the vertebral column works is crucial to understanding locomotion and body support on land, and inter-vertebral joint stiffness (how much the joints of the backbone resist forces that would move them in certain directions) in particular has been linked to trunk movements in other animals. For this reason, vertebral morphology is often used to infer functional information about extinct animals, including dinosaurs. However, vertebral form-function relationships have seldom been experimentally tested, and tests on non-mammals are particularly scarce. So we thought the crocodile spines might be able to tell us more about the relationship between vertebral morphology, mechanics, and locomotion in a broader sample of vertebrate animals. If crocodile spine morphology could be used to predict joint stiffness, then morphological measurements of extinct crocodile relatives would have some more empirical heft to them. Several skeletal features seem to play roles such as levers to mechanically stiffen crocodile spines (click to emcroc’en):

Croc vertebra-01

Anatomy of a crocodile vertebra

We decided to use a very simple technique that could be replicated in any lab to measure passive stiffness in crocodile cadavers. We dissected out individual joints were and loaded with known weights. From the movement of the vertebrae and the distance from the joint, we calculated how much force takes to move the joint a certain number of degrees (i.e. stiffness).

Julia w vertebra (480x640)

Me with crocodile vertebra and G-clamp

Xray

X-ray of two crocodile vertebrae loaded with a metric weight to calculate their joint’s stiffness

Afterwards, we boiled the joints to remove the soft tissues – the smell was indescribable! We took 14 measurements from each vertebra. All of these measurements had been associated with stiffness or range of motion in other studies, so we thought they might be correlated with stiffness in crocodiles also.

morphometrics

Some of the vertebral measurements that were related to stiffness

Despite my efforts to keep it simple, the process of data collection and analysis was anything but. I recall and exchange with Stephanie Pierce that went something like this:

Stephanie: “How’s it going?”

Me: “Well, the data are messy, I’m not seeing the trends I expected, and everything’s taking twice as long as it was supposed to.”

Stephanie: “Yes, that sounds like science.”

That was the biggest lesson for me: going into the project, I had been unprepared for the amount of bumbling around and re-thinking of methods when the results were coming up implausible or surprising. In this case there were a couple of cool surprises: for one thing, crocodiles turn out to have a very different pattern of inter-vertebral joint stiffness than typical mammals: while mammals have stiff thoracic joints and mobile lumbar joints, crocodiles have stiffer lumbar joints. Many mammals use large lumbar movements during bounding and galloping, so crocodiles must use different axial mechanics than mammals, even during similar gaits. While that’s not shocking (they did evolve their galloping and bounding gaits, and associated anatomy, totally independently), it is neat that this result came out so clearly. Another unexpected result was that, although several of our vertebral measurements were correlated with stiffness, some of the best predictors of stiffness in mammals from previous studies were not correlated with stiffness in crocodiles. The study tells a cautionary tale about making assumptions about extinct animals using data from only a subset of their living relatives or intuitive ideas about form and function.

Finally, the experience of doing the experiments and writing the paper got me interested in other aspects of crocodilian functional anatomy. For instance, how does joint stiffness interact with other factors, such as muscle activity and properties of the ribs, skin, and armor in living crocodiles? Previous studies by Frey and Salisbury had commented on this, but the influence of those factors is less tractable to experiment on or model than just naked backbones with passively stiff joints. In the future, I’d like to study vertebral movements during locomotion in crocodiles – especially during bounding and galloping – to find out how these patterns of stiffness relate to movement. In the meantime, our study shows that, to a degree, crocodile backbone dimensions do give some clues about joint stiffness and locomotor function.

To find out more, read the paper! It was just featured in Inside JEB.

Julia Molnar, Stephanie Pierce, John Hutchinson (2014). An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). The Journal of Experimental Biology 217, 757-768 link here and journal’s “Inside JEB” story

Read Full Post »

Why should you care
If you have to trim my hooves?
I’ve got to move with good feet
Or be put down fast.
I know I should trot
But my old vet she cares a lot.
And I’m still living on stone
Even though these feet won’t last.

(mutated from The Who, “Cut My Hair“, Quadrophenia… from the heyday of concept albums and grandiose rock!)

Talkin' bout my osteitis?

Talkin’ bout my osteitis

Day Four of Freezermas. Four posts to go. I can see through time… Hence the silly title for today’s concept album track. Quadrupedophilia did not have a good ring to it, anyway.

Stomach-Churning Rating: 4/10. Reasonably tame; bones and hooves. Some pathologies of those, but not gory.

If Quadrophenia was the story of a man with four personalities (metaphor for the four band members), then quadrupedopheniaphilia is the story of how diverse forms of four-legged animals have lots of problems because of our exploitation of them, which leaves a crisis to resolve: Who are we? Are we caring enough to fix a bad situation we’ve created for our four-legged ungulate comrades?

Four legs good, two legs bad? Not really. I featured ostriches earlier this week and two legs are indeed pretty good. Four-legged cats are great, too. But four-footed big beasties with deformed hooves: those are bad all around. That leads to today’s topic…

But hey, happy 205th funkin’ birthday Charles freakin’ Robert Darwin!

Charles Darwin on his horse “Tommy” in 1868- from the Darwin Correspondence Project, https://www.darwinproject.ac.uk/darwins-photographic-portraits

Today’s post concerns a phenomenon that (Western) civilization has wrought with large hoofed mammals, and evolution is a big part of it (as well as biomechanics and anatomy) . Cynical perspective, with some truth to it: We’ve evolved larger and heavier animals to either do harder and harder work on tough surfaces like concrete floors and tarmac roads, or to stand around while we gawk at them or wait for them to get fat and tasty. Either way, the outcome should come as no surprise: their feet, the interface of that hard ground and their body, eventually start falling apart.

I’ve posted about this several times with respect to rhinos and elephants (here and here and here and here and here), but this post hits closer to home: what goes wrong with the humble hoof of our friend the horse, cow, sheep or other ungulate. It’s where the rubberkeratin hits the road. Ungulates have not evolved to live on dirty, wet concrete floors; to be obese and inactive; or to have hooves that don’t get worn down. So they suffer when they do encounter those modern conditions.

“No foot no horse,” they say, and it’s so true- once the feet start to go (due to hoof overgrowth or cracks, abscesses or other trouble), it’s hard to reverse the pathologies that ensue (arthritis, osteomyelitis, infections, fractures, etc.) and the animals start going lame, then other limbs (supporting greater loads than the affected limb) start to go, too, sometimes.

Jerry the obese, untrimmed-hoof-bearing horse.

Jerry the obese, untrimmed-hoof-bearing horse. “Turkish slippers” is an apt description. DM has more here.

We can do plenty about these problems, and the title track above explains one of them: trimming hooves. Hooves often get overgrown, and if animals are tame enough (requires training!) or are sedated (risky!), hoof care experts (farriers) can rasp/file/saw them down to a more acceptable conformation. If we don’t, and the animals don’t do the trimming themselves by digging or walking around or living on varied surfaces, then the feet can suffer. But there’s still not much evidence for most common species kept in captivity by humans that indicates what the best methods are for avoiding or fixing foot problems.

What we’ve been trying to do at the RVC is use our expertise in evolution, anatomy and biomechanics to find new ways to prevent, detect, monitor or reverse these foot problems. We had BBSRC grant funding from 2009-2012 to do this, and the work continues, as it behooves us to do… Past posts have described some of this research, which spun off into other benefits like re-discovering/illuminating the false sixth toes of elephants. We’re working with several zoos in the UK to apply some of the lessons we’re learning to their animals and management practices.

Above: Thunderous hoof impacts with nasty vibrations, and large forces concentrated on small areas, seem to contribute to foot problems in hoofed mammals. From our recent work published in PLOS ONE.

Foot health check on a white rhino at a UK zoo. Photo by Ann & Steve Toon, http://www.toonphoto.com/

Foot health check on a white rhino at a UK zoo; one of the animals we’ve worked with. Photo by Ann & Steve Toon, http://www.toonphoto.com/

If it works, it’s the most satisfying outcome my research will have ever had, and it will prevent my freezers from filling up with foot-influenced mortality victims.

Again, I’ll tell this tale mainly in photos. First, by showing some cool variations evolved in the feet of hoofed mammals (artiodactyls and perissodactyls; mostly even/odd-toed ungulates of the cow/sheep and horse lineages, respectively). Second, by showing some pretty amazing and shocking images of how “normal” hooves go all wonky.

Two ways to evolve a splayed hoof for crossing soft ground: 2 toes that are flexible and linked to big pads (camel), and 2 main toes that allow some extra support from 2 side toes when needed (elk). At Univ. Mus. Zoology- Cambridge.

Two ways to evolve a splayed hoof for crossing soft ground: 2 toes that are flexible and linked to big pads (camel), and 2 main toes that allow some extra support from 2 side toes when needed (elk). At Univ. Mus. Zoology- Cambridge.

Diversity of camelid foot forms: big clunky, soft Old World camel feet and dainty, sharp highland New World camelids.

Diversity of camelid foot forms: big clunky, soft Old World camel feet and dainty, sharp highland New World camelids. [Image source uncertain]

Moschus, Siberian musk deer with remarkable splayed hooves/claws; aiding it in crossing snowy or swampy ground. At Univ. Mus. Zoology- Cambridge.

Moschus, Siberian musk deer with remarkable splayed hooves/claws; aiding it in crossing snowy or swampy ground. At Univ. Mus. Zoology- Cambridge.

Tragulus, or mouse-deer, with freaky long "splint bones" (evolutionarily reduced sole bones or metatarsals) and dainty hooved feet. At Univ. Mus. Zoology- Cambridge.

Tragulus, or mouse-deer, with freaky long “splint bones” (evolutionarily reduced sole bones or metatarsals) and dainty hooved feet. At Univ. Mus. Zoology- Cambridge.

Overgrown giraffe hooves. An all-too-common problem, and one we're tacking with gusto lately, thanks to PhD student Chris Basu's NERC-funded giraffe project!

Overgrown giraffe hooves. An all-too-common problem, and one we’re tacking with gusto lately, thanks to PhD student Chris Basu’s NERC-funded giraffe project!

Wayyyyyyyyy overgrown hooves of a ?sheep, from the RVC's pathology collection.

Wayyyyyyyyy overgrown hooves of a ?sheep, from the RVC’s pathology collection.

Craaaaaaazy overgrown ?cow hooves, from the RVC's pathology collection.

Craaaaaaazy overgrown ?sheep hooves, from the RVC’s pathology collection.

If we understand how foot form, function and pathology relate in diverse living hoofed mammals, we can start to piece together how extinct ones lived and evolved- like this giant rhinoceros! At IVPP museum in Beijing.

If we understand how foot form, function and pathology relate in diverse living hoofed mammals, we can start to piece together how extinct ones lived and evolved- like this giant rhinoceros! At IVPP museum in Beijing.

So, what do we do now? If we love our diverse hoofed quadrupeds, we need to exert that quadrupedopheniaphilia and take better care of them. Finding out how to do that is where science comes in. I’d call that a bargain. The best hooves ever had?

Read Full Post »

Today, to help thaw you poor Americans out of that Arctic Vortex, we have a guest post bringing the heat, by my PhD student Sophie Regnault! This relates to some old posts about rhinos, which are a mainstay here at the WIJF blog- I’ve posted a lot about the rhino extinction crisisfeet, skin, big and bigger bones, and more, but this is our first rhinoceros-focused, actual published scientific paper! Take it away, Sophie! (We’re planning a few more “guest” blog posts from my team, so enjoy it, folks!)

Almost a year ago to the day, I submitted my first paper written with John Hutchinson and Renate Weller at the RVC and it has (finally!) just been published. To celebrate, I have been allowed to temporarily hijack ‘What’s in John’s Freezer?’ for my first foray into the world of blogging. I started the paper back as an undergraduate veterinary student. It was my first experience of proper research, and so enjoyable that I’m now doing a PhD, studying sesamoid bones like the patella!

We wanted to discover more about the types of bony disease rhinos get in their feet, of which there isn’t much known. Rhinos, of course, are big, potentially dangerous animals – difficult enough to examine and doubly difficult to x-ray clearly because of their thick skin. Unlike diseases which are fairly easy to spot (like abscesses or splitting of the nails and footpad), there is hardly anything out there in the scientific literature on bony diseases in rhino feet. It’s no small issue, either. When your feet each need to support over 900kg (typical for a large white rhino), even a relatively minor problem can be a major pain. Progressing unseen under their tough hide, lesions in the bone can eventually become so serious than the only solution is euthanasia, but even mild conditions can have negative consequences. For example, foot problems in other animals are known to have knock-on effects on fertility, which would be a big deal for programs trying to breed these species in captivity.

Hidden treasures abound!

Hidden treasures abound! (Photos can be clicked to embiggen)

Data gathering was a blast. I got to travel to Cambridge, Oxford, and London during one of England’s better summers, and these beautiful old museums were letting me snoop around their skeleton collections. I’d been there often as a visitor, but it was anatomy-nerd-heaven to go behind the scenes at the Natural History Museum, and to be left alone with drawers and drawers of fantastic old bones. Some of the specimens hadn’t been touched for decades – at Cambridge University Museum of Zoology, we opened an old biscuit tin filled with the smallest rhinoceros foot bones, only to realise they were wrapped in perfectly preserved 1940’s wartime Britain newspaper.

rhino-feet (2)

rhino-feet (4)

rhino-feet (3)

Osteomyelitis… (3 clickable pics above) the toe’s probably not meant to come off like that!

In addition to my museum studies, I had another fun opportunity to do hands-on research.  John (of course!) had freezers full of rhino legs (looking disconcertingly like doner kebabs, but maybe that’s just me!), which we CT scanned to see the bones. Although it is a pretty standard imaging technique, at this point I had only just started my clinical studies at the vet hospital, and being able to flick through CT scans felt super badass. Most vet students just get to see some horse feet or dog/cat scans, at best.

Another osteomyelitis fracture, visible in a CT scan.

Another osteomyelitis fracture, visible in a CT scan reconstruction.

We expected to find diseases like osteoarthritis (a degenerative joint disease) and osteomyelitis (bone infection and inflammation). Both had previously been reported in rhinoceroses, although it was interesting that we saw three cases of osteomyelitis in only 27 rhinos, perhaps making it a fairly common complication. It’s an ugly-looking disease, and in two of the cases led to the fat, fluffy bones fracturing apart.

We also had several unexpected findings, like flakes of fractured bone, mild dislocations, tons of enthesiophytes (bone depositions at tendon/ligament attachments) and lots of holes in the bones (usually small, occasionally massive). For me, writing up some of these findings was cool and freaky paranoid in equal measures. They hadn’t been much described before, and we were unsure of their significance. Was it normal, or pathological? Were we interpreting it correctly? Discussions with John and Renate (often involving cake) were reassuring, as was the realisation that in science (unlike vet school at the time, where every question seemed to have a concrete answer) you can never be 100% sure of things. Our study has a few important limitations, but has addressed a gap in the field and found some neat new things. Six months into my PhD, I’m enjoying research more than ever, and hoping that this paper will be the first of many (though I promise I won’t keep nicking John’s blog for my own shameless self-promotion if that happens!  EDIT BY JOHN: Please do!).

Nasty osteoarthritis wearing away the bone at the joint surface. Most cases occurred in the most distal joint.

Nasty osteoarthritis wearing away the bone at the joint surface. Most cases occurred in the most distal joint.

Deep holes in some of the bones: infection, injury?

Deep holes in some of the bones: infection, injury?

The paper:
Sophie Regnault, Robert Hermes, Thomas Hildebrandt, John Hutchinson, and Renate Weller (2013) OSTEOPATHOLOGY IN THE FEET OF RHINOCEROSES: LESION TYPE AND DISTRIBUTION. Journal of Zoo and Wildlife Medicine: December 2013, Vol. 44, No. 4, pp. 918-927.

Read Full Post »

A photo blog post for ya here! I went to Dublin on a ~28 hour tour, for a PhD viva (now-Dr Xia Wang; bird feather/flight evolution thesis) earlier this month. And I made a beeline for the local natural history museum (National Museum of Ireland, Natural History building) when I had free time. So here are the results!

Stomach-Churning Rating: Tame; about a 1/10 for most, but I am going to break my rule about showing human bodies near the end. Just a warning. The bog bodies were too awesome not to share. So that might be 4/10-8/10 depending on your proclivities. They are dry and not juicy or bloody, and don’t look as human as you’d expect.

Simple Natural History museum entrance area.

Simple Natural History museum entrance area.

Adorable frolicking topiaries outside the NHM.

Adorable frolicking topiaries outside the NHM.

Inside, it was a classical Victorian-style, dark wood-panelled museum stuffed with stuffed specimens. It could use major refurbishment, but I do love old-fashioned exhibits. Get on with it and show us the animals; minimize interpretive signage and NO FUCKING INTERACTIVE COMPUTER PANELS! So by those criteria, I liked it. Some shots of the halls: hall2 hall1 hall3 hall4 hall5 hall6 And on to the specimens!

Giant European deer ("Irish elk"). I looked at these and thought, "why don't we see female deer without antlers ever? then noticed one standing next to these; photo was crappy though. :(

Giant European deer (“Irish elk”). I looked at these and thought, “why don’t we see female deer without antlers ever? then noticed one standing next to these (you can barely see it in back); too bad my photo is crappy.

Superb mounted skeleton of giraffe (stuffed skin was standing near it).

Superb mounted skeleton of giraffe (stuffed skin was standing near it).

A sheep or a goat-y thingy; I dunno but it shows off a nice example of the nuchal ligament (supports the head/neck).

A sheep-y or a goat-y beastie; I dunno but it shows off a nice example of the nuchal ligament (supports the head/neck).

Yarr, narwhals be internet gold!

Yarr, narwhals be internet gold!

Giant blown glass models of lice!

Giant blown glass models of lice!

Who doesn't like a good giant foramanifera image/models? Not me.

Who doesn’t like a good giant foramanifera image/model?

"That's one bigass skate," I murmured to myself.

“That’s one bigass skate,” I murmured to myself.

"That's one bigass halibut," I quipped.

“That’s one bigass halibut,” I quipped.

Tatty basking shark in entry hall.

Tatty basking shark in entry hall.

Irish wolfhound, with a glass sculpture of its spine hanging near it, for some reason.

Irish wolfhound, with a glass sculpture of its spine hanging near it, for some reason.

Stand back folks! The beaver has a club!

Stand back everyone! That beaver has a club!

Skull of a pilot whale/dolphin.

Skull of a pilot whale/dolphin.

Nice anteater skeleton and skin.

Nice anteater skeleton and skin.

Nice anteater skeleton and skin.

Nice wombat skeleton and skin.

Sad display of a stuffed rhino with the horn removed, and signage explaining the problem of thefts of those horns from museum specimens of rhinos worldwide.

Sad display of a stuffed rhino with the horn removed, and signage explaining the problem of thefts of those horns from museum specimens of rhinos worldwide.

But then the stuffed animals started to get to me. Or maybe it was the hangover. Anyway, I saw this…
creepy proboscis (1) creepy proboscis (2)

A proboscis monkey mother who seemed to be saying “Hey kid, you want this yummy fruit? Tough shit. I’m going to hold it over here, out of reach.” with a disturbing grimace. That got me thinking about facial expressions in stuffed museum specimens of mammals more, and I couldn’t help but anthropomorphize as I toured the rest of the collection, journeying deeper into surreality as I progressed. What follows could thus be employed as a study of the Tim-Burton-eseque grimaces of stuffed sloths. Click to emslothen.

sloths (1) sloths (5)sloths (4) sloths (3) sloths (2)

Tree anteater has a go at the awkward expression game.

Tree anteater has a go at the awkward expression game.


This completed my tour of the museum; there were 2 more floors of specimens but they were closed for, sigh, say it with me… health and safety reasons. Balconies from which toddlers or pensioners or drunken undergrads could accidentally catapult themselves to their messy demise upon the throngs of zoological specimens below. But the National Museum’s Archaeology collection was just around the block, so off I went, following whispered tales of bog bodies. There will be a nice, calm, pretty photo, then the bodies, so if peaty ~300 BCE cadavers are not your cup of boggy tea, you can depart this tour now and lose no respect.

Impressive entrance to the National Museum's Archaeology building.

Impressive entrance to the National Museum’s Archaeology building.

The bog bodies exhibit is called “Kingship and Sacrifice“. It is packed with cylindrical chambers that conceal, and present in a tomb-like enclosed setting, the partial bodies of people that were killed and then tossed in peat bogs as honoraria for the ascension of a new king. The peaty chemistry has preserved them for ~2300 years, but in a dessicated, contorted state. The preservation has imparted a mottled colouration and wrinkled texture not far off from a Twix chocolate bar’s. Researchers have studied the bejesus out of these bodies (including 3D medical imaging techniques) and found remarkable details including not just wounds and likely causes of death (axes, strangling, slit throats etc) but also clothing, diet, health and more.

Here they are; click to (wait for it)… emboggen:

BogBodies (1) BogBodies (2) BogBodies (3) BogBodies (4) BogBodies (5) BogBodies (6)

Did you find the Celtic armband on one of them?

Finally (actually this happened first; my post is going back in time), I visited UCD’s zoology building for the PhD viva and saw a few cool specimens there, as follows:

Giant deer in UCD zoology building foyer.

Giant deer in UCD zoology building foyer, with a lovely Pleistocene landscape painted on the wall behind it.

Sika deer in awkward posture in Univ Coll Dublin zoology building's foyer.

Sika deer in an awkward posture (what is it supposed to be doing?) in Univ Coll Dublin zoology building’s foyer.

The pose of this ?baboon? struck me as very peculiar, and menacing- reminiscent of a vampire bat's pose, to me.

The pose of this ?baboon?mandrill struck me as very peculiar and menacing- reminiscent of a vampire bat’s pose.

A whole lotta chicken skeletons in a UCD teaching lab.

A whole lotta chicken skeletons in a UCD teaching lab.

After the viva we went out for some nice Chinese food and passed some Dublin landmarks like this:

Trinity College entrance, I think.

Trinity College entrance, I think.Former Irish Parliament; now the Bank of Ireland.

And we wandered into a very posh Irish pub called the Bank (on College Green), which displayed this interesting specimen, as well as some other features shown below:

Replica of illuminated old Gaelic manuscript.

Replica of illuminated 9th Century gospel manuscript “The Book of Kells”, with gorgeous Celtic art.

Vaults near toilets in the Bank pub.

Vaults near toilets in the Bank pub. Almost as cool as having giant freezers down there.

Nice glass ceiling of the Bank pub.

Nice glass ceiling of the Bank pub.

And Irish pub means one big, delicious thing to me, which I will finish with here– much as I finished that night off:

Ahhh...

Ahhh… ice cold.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 2,183 other followers