Feeds:
Posts
Comments

Posts Tagged ‘buddies’

Owing Owen

It’s Darwin Day 2015 (or will be shortly), and also on this blog it’s Freezermas, a time of contemplative dissection of morphology and its history. This year I won’t be doing the crazy 7 posts in 7 days that I’ve done before (see 14 past ones here), and I won’t be doing a customary homage to Darwin. Instead, I’m dedicating today’s post to Richard Owen, oft characterized as Darwin’s greatest nemesis. Blasphemy? Nah. I’m a Darwin fan, sure, but today Owen gets his due from me. This post is like a “Top ten things you didn’t know about Richard Owen” post, but without the list, and some of them might be things you know, and I’m not even sure if there are ten of them, but they tend to be about Richard Owen. I feature a bunch of Owen’s papers’ coolest artwork, with links to the free versions of those papers, too. Bone up!

Stomach-Churning Rating: 3/10 for woodcuts that would otherwise be graphic. 7+/10 for rabid Darwin fans.

Owen was one of greatest (vertebrate) anatomists ever, if not the greatest (Alfred Romer gives him a run for his money in my opinion, but was less of a conceptual revolutionary). He was a key player in the divorce of the Natural History Museum from the British Museum and thus its move to its current South Kensington home in London as well as its autonomy and rise to scientific and cultural prominence. Hence, like today’s post’s title indicates, we owe Owen a lot as morphologists and as fans of biology (i.e. natural history). Indeed, his contributions are often undersold in deference to Darwin’s, and in service to a conventional narrative (written by the victorious Darwinians) in which he plays a villainous role. Even if one cannot admire the man as a touchy-feely kind of dude, his work demands respect and historiographic justice.

Rupke

I was inspired to write this post after reading a biography of Richard Owen some months ago: “Richard Owen: Biology Without Darwin, a revised edition”. It’s a fascinating read, and makes some points that challenged my naïve views of the history of biology, especially evolution and Victorian science. Author Nicolaas Rupke hammers home that pro-Darwin propaganda relegated Owen to a more minor and infamous position in the history of science than he deserved, defaming him as a cold-hearted, scheming, inconsistent jerk. This biography admits truth to Owen lacking some social graces and playing tough politics sometimes, but reminds us of his eminence in British science, which reverberated globally and was in no small part due to his determined drive and strategic rigour. I recommend the book to any fans of natural history and science, especially morphology. Indeed, Rupke’s 2009 edition was released in paperback for the Darwinian centennial, as an abridgement of his 1994 book. If you want to know more about Rupke’s 2009 book, there are informative reviews by Switek here and Lynch here. This biography humanizes Owen and casts away some of the demonizing. Scandalous snippets of Darwinians politicking against Owen are memorable– e.g. Owen’s “contest against the surrounding agencies” was a predecessor to Darwin’s “struggle for existence” and natural selection, which Darwin downplayed (Rupke, pp.157,169-171).

As Rupke’s work emphasizes, Owen was a pre-Darwininan evolutionary biologist, not a creationist. He devised an “axiom of the continuous operation of the ordained becoming of living things” that qualifies as evolutionist, but not transmutationist. He had ideas about evolution that just seem odd to a post-Darwinian mind, especially an “internalist” driving mechanism for evolution (something about the embryo that causes evolution to proceed; not a primarily external, environmental impetus as Darwin favoured), leading to orderly patterns of evolution, not the higgledy-piggledy bushy evolution of Darwin and his successors (e.g. Gould). To a modern evolutionary morphologist, Owen’s “transcendental morphology” echoes of earlier continental European work by Oken (& fellow Germanics), Cuvier (& fellow French) and others, and as such often feels strange – even mystically religious (pantheistic) or unscientific. And, like many Victorians, the idea of apes including, and a subset being ancestral to, humans repulsed Owen. That revulsion seems to have clouded his judgement on the scientific matters involved, which he famously sparred over with Thomas Huxley.

Forelimbs of Archaeopteryx compared with falcon, Pterodactylus, and humerus of a raven (left to right). From: Owen, R. (1863). On the Archéoptéryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London, 33-47. http://www.jstor.org/stable/108788 FREE!

Forelimbs of Archaeopteryx compared with falcon, Pterodactylus, and humerus of a raven (left to right). Owen classifed the former as a bird, with potential relationships to pterosaurs (Rupke, pp.175-6); Darwinians like Huxley instead saw the dinosaurian, reptilian ancestry.
From:
Owen, R. (1863). On the Archéoptéryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London, 33-47.
http://www.jstor.org/stable/108788
FREE!

However, we can credit Owen- like Lamarck and Geoffroy Saint-Hiliare in France- as an early “evo-devo” scientist trying to link transformation across lineages with developmental mechanisms. We can also celebrate Owen as one of the foremost early champions of the study of osteology as a worthy scientific pursuit in and of itself. Much of Rupke’s biography is structured to focus on the institutional structures that Owen played such a pivotal role in creating, especially the curated collections of the Natural History Museum (which Owen spent ~1856-1881 fighting to establish as its own facility!). Owen’s vast monographs on Cretaceous Reptilia, the flightless moa (e.g. Dinornis; with papers covering 40 years of research that continued almost up until Owen’s demise) and odd Gondwanan mammals of the Australian colonies (many of these specimens having been shipped to the museum by Darwin for Owen’s own studies) cement his status as an integrative collections-based researcher who did not eschew palaeontological research “because biologists don’t do that”, or some such divisive nonsense that we still encounter today.

Skull of a crocodile, exploded to show homologies of the bones; and a forelimb for added context. From: Richard Owen, Report on the archetype and homologies of the vertebrate skeleton. BAAS. https://archive.org/details/reportonarchetyp00owen FREE!

Skull of a crocodile, exploded to show homologies of the bones; and a forelimb for added context.
From:
Richard Owen, Report on the archetype and homologies of the vertebrate skeleton. BAAS.
https://archive.org/details/reportonarchetyp00owen
FREE!

Foetal skeleton of a human, with skull exploded for comparison of homologies. From Owen 1847 as above.

Foetal skeleton of a human, with skull exploded for comparison of homologies.
From Owen 1847 as above.

Speaking of palaeontology, and science communication, 1841 was when Owen coined the “Dinosauria”, tying together disparate forms such as Hylaeosaurus, Megalosaurus and Iguanodon by the recognition that they were not “typical reptiles” but rather advanced in many distinct ways (e.g. locomotor adaptations) that united them as a group. We owe a lot to that early recognition, which was no facile achievement considering how fragmentary most of the early (pre-“Bone Wars”) dinosaur fossil discoveries were. Like Darwin, Owen realized that the giant ground sloths that he described (and Darwin found many of during his Beagle voyage), such as Megatherium, were related animals, too, and in this case having extant relatives.

Most broadly, within comparative biology, Owen searched for the principles of and codified the concept he called homology, which was part of his very French/Germanic quest for “unity of type” as an fairly essentialist (but not always Platonic, as Rupke cautions- pp. 126-7,130), typological (even teleological?) principle underlying common themes in comparative anatomy. His tome on the “archetype” and vertebral components of the skull (see pics above) is lavishly detailed and a challenging but rewarding read, with fascinating (even if sometimes quite wrong) ideas about homologous parts of vertebrate heads. Again, Owen’s work in comparative anatomy easily became an integral part of evolutionary theory– homology as a consequence of (and reciprocally, evidence for) common ancestry featured prominently. As Rupke notes (p.179), “With little more than a flick of the fingers, Owen’s archetype could be turned into an ancestor.”

Tail sheath/club of Meiolania! from Owen, R. (1888). On parts of the skeleton of Meiolania platyceps (Ow.). Philosophical Transactions of the Royal Society of London. B, 181-191. http://www.jstor.org/stable/91676 FREE!

Tail sheath/club of Meiolania! Reminiscent of this…
from
Owen, R. (1888). On parts of the skeleton of Meiolania platyceps (Ow.). Philosophical Transactions of the Royal Society of London. B, 181-191.
http://www.jstor.org/stable/91676 FREE!

Jawsome! Thylacoleo, marsupial lion. From: Richard Owen, Additional Evidence of the Affinities of the Extinct Marsupial Quadruped Thylacoleo carnifex (Owen). Phil. Trans. R. Soc. Lond. B: 1887; 178: 1-3 http://rstb.royalsocietypublishing.org/content/178/1 FREE!

Jawsome!
Thylacoleo, marsupial lion.
From: Richard Owen,
Additional Evidence of the Affinities of the Extinct Marsupial Quadruped Thylacoleo carnifex (Owen).
Phil. Trans. R. Soc. Lond. B: 1887; 178: 1-3
http://rstb.royalsocietypublishing.org/content/178/1 FREE!

This year (2015) is the 350th anniversary of the journal Philosophical Transactions of the Royal Society, in which Owen published key studies of exotic Gondwanan animals such as the giant, tail-clubbed early turtle Meiolania and the “marsupial lion” Thylacoleo (see pics above). Some of Owen’s most outstanding and earliest work, likewise published in Phil. Trans., concerned seemingly aberrant mammals like the platypus (Ornithorhynchus), whose egg-laying and milk-excreting organs he detailed in 1832-1834 (see pics below). Like so many of his discoveries, these detailed descriptions and gorgeous commissioned woodcut illustrations often were sound, groundbreaking work, and are still cited and comprehensible today. Yet Owen’s interpretations sometimes became re-evaluated in a Darwinian rather than transcendentalist light, ironically building the case for Darwinian-style evolution (transmutation). Was the platypus a mammal, reptile or bird? Owen correctly assigned it to the Mammalia and recognized its relationship with the spiny anteaters (echidnas), but today we understand it better as a member of an early branch off the mammalian stem that includes a broad diversity of other species such as the multituberculates. Brian Hall wrote a review of the history of the “platypus paradox” here— it’s a fascinating story.

"Areola" of the female platypus in the abdominal region, with embiggened version below. From: Richard Owen, On the Mammary Glands of the Ornithorhynchus paradoxus. Philosophical Transactions of the Royal Society of London Vol. 122 (1832), pp. 517-538 http://www.jstor.org/stable/107974 FREE!

“Areola” of the female platypus in the abdominal region, with embiggened version below.
From:
Richard Owen, On the Mammary Glands of the Ornithorhynchus paradoxus.
Philosophical Transactions of the Royal Society of London
Vol. 122 (1832), pp. 517-538
http://www.jstor.org/stable/107974 FREE!

Dissection of a female platypus, showing the egg-laying apparatus. From: On the Ova of the Ornithorhynchus paradoxus Richard Owen Philosophical Transactions of the Royal Society of London Vol. 124 (1834), pp. 555-566. http://www.jstor.org/stable/108077 FREE!

Dissection of a female platypus, showing the egg-laying apparatus.
From:
On the Ova of the Ornithorhynchus paradoxus
Richard Owen
Philosophical Transactions of the Royal Society of London
Vol. 124 (1834), pp. 555-566.
http://www.jstor.org/stable/108077 FREE!

As a PhD student of Prof. Kevin Padian, a Richard Owen afficionado and historian, I couldn’t escape awareness of Owen. His visage decorated many parts of Padian’s office and we were often reminded of Owen’s prodigious prowess (and his sly politics- e.g., his “Parthian shot” letter that Padian described). But I didn’t go back and read much Owen until recently, while researching the evolution of the avian patella with my own PhD student Sophie Regnault. Owen described a patella in the moa Dinornis, but we re-interpreted this as an ankle sesamoid bone (common in moa)– although the described fossil “patella” itself seems to have been lost. Then Owen’s patella research came up in a later, often vitriolic, debate (featuring the eminent bird anatomist Shufeldt as well as other scientists Jeffries and Gill) in Science magazine over what bones cormorants and other birds have in their knees– read more about it here. In perusing Owen’s moa and other anatomical work, I gained a deep appreciation for it and now I’m a fan. I even feel a special kinship with Owen– like me, various zoos sent him their specimens for scientific study via dissection, and he was an active science communicator. I’m sure he’d have appreciated my freezers. Not so sure about this blog…

Find the "patella"! From Professor Owen C.B., F.R.S., F.Z.S., &c. (1883), On Dinornis (Part XXIV.): containing a Description of the Head and Feet, with their dried Integuments, of an Individual of the species Dinornis didinus, Owen. The Transactions of the Zoological Society of London, 11: 257–261. http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.1883.tb00360.x/abstract FREE!

Find the “patella”!
From Professor Owen C.B., F.R.S., F.Z.S., &c. (1883), On Dinornis (Part XXIV.): containing a Description of the Head and Feet, with their dried Integuments, of an Individual of the species Dinornis didinus, Owen. The Transactions of the Zoological Society of London, 11: 257–261.
http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.1883.tb00360.x/abstract FREE!

So that’s my ode to Owen, which lightly touches on highlights of his storied career. Opinions vary on how fun he would have been to quaff pints of ale with (what do you think?), but as fabled (if flawed) heroes of science go, he deserves the label, and morphologists should continue to imbibe and savour his scholarly works, seeking draughts of inspiration within their contents as gourmands of Owen-ia. With some 600 papers published by Owen, there’s surely more for us all to discover.

Morphologists and friends, what’s your favourite Owen paper and why? Speak up!

[If you remain silent, at least do that while reading some Owen today!]

And happy Darwin Day!

Read Full Post »

Stomach-Churning Rating: 1/10 for ambiguous sacks.

I mainly post here about my team’s research and interests, but today I felt like sharing something special and concrete: the contents of our freezers. They are not just John’s and there’s more than one freezer; thus there is room to share, within reason. So if you’re a researcher, especially in the UK/EU, needing unusual research specimens/tissue, you might want to contact me to use them. This blog’s posts summarize most of what I have available, and for security/other reasons I don’t want to get into deep detail here, but we sport a respectable collection of limbs/bodies of animals like:

Birds: ostriches, emus, broiler chickens, guineafowl, assortment of others.

Crocodiles: Nile, Osteolaemus, Morelet’s and some others (1 Melanosuchus, 1 normal Caiman).

Squamates: a monitor lizard or two and some other random lizards.

Amphibians: a few fire salamanders and such.

Mammals: of course, plenty of elephant bits (no ivory!), rhinos too (no horns!), giraffes, a dwarf forest buffalo, alpacas, deer, pieces of camels and zebras (feet etc.), wild cat species (no penises!) and a few other things. And then the usual assortment of veterinary species like cows and horses. A heavy focus on limb material– very few if any heads, torsos, etc.

This is in addition to a nice little comparative skeletal collection, focused on cleaned members of the above groups and a smattering of others. Nothing on the scale of RVC’s marvellous Anatomy Museum, but we’re young.

And two African land snail shells (inhabited) I was reminded of during a recent inventory… Here are some of my helpful helpers in that inventory extravaganza!

inventory

Especially if you’re searching for CT scan data (sooner or later these data will appear online; I want it to happen!), tissue samples for genetics or cell biology (if frozen is OK!), comparative anatomical specimens to inspect, or other uses of frozen anatomy (photography? other art? We’ve helped artists before!), the freezers might be able to help you! The less destructive, the better, but even some destructive analysis might be OK. We regularly accommodate visitors, either independent ones or collaborators, and I aim to provide good hospitality when I can accommodate them!

Get in touch with me if the above description is you. It’s not an open invitation to everyone, but for valid research purposes I can and should try to help. But I don’t run a museum-style collection (yet), I’m limited by time and other human factors, so I can’t do everything and help everyone. The primary purpose of all the hard work we’ve done accumulating these specimens remains to support our research, but there’s room to help others too, and we want to maximize the impact of our research collection, including potentially on teaching and public engagement with science where feasible. So I’ve put it out there, and that ends this post.

Is there something in the "Non-Elephant Freezer" for you?

Is there something in the “Non-Elephant Freezer” for you?

Read Full Post »

How do I manage my team of 10+ researchers without losing my mind <ahem> or otherwise having things fall apart? I’m often asked this, as I was today (10 December; I ruminated before posting this as I worried it was too boring). Whether those undesirable things have truly not transpired is perhaps debatable, but I’m still here and so is my team and their funding, so I take that as a good sign overall. But I usually give a lame answer to that question of how I do it all, like “I have no secrets, I just do it.” Which is superficially true, but…

Today was that time of year at the RVC when I conduct appraisals of the performance and development of my research staff, which is a procedure I once found horridly awkward and overly bureaucratic. But now that it focuses more on being helpful by learning from past missteps and plotting future steps in a (ideally) realistic fashion than on box-ticking or intimidation, I find the appraisals useful. The appraisals are useful at least for documenting progress and ensuring that teammates continue to develop their careers, not just crank out data and papers. By dissecting the year’s events, one comes to understand what happened, and what needs to happen in the next year.

The whole process crystalizes my own thoughts, by the end of a day of ~1 hour chats, on things like where there needs to be different coordination of team members in the coming year, or where I need to give more guidance, or where potential problems might arise. It especially helps us to sort out a timeline for the year… which inevitably still seems to go pear-shaped due to unexpected challenges, but we adapt and I think I am getting better myself at guessing how long research steps might take (pick an initial date that seems reasonable, move it back, then move it further back, then keep an eye on it).

Anyway, today the appraisals reminded me that I don’t have a good story for how I manage my team other than by doing these appraisals, which as an annual event are far from sufficient management but have become necessary. And so here I am with a post that goes through my approaches. Maybe you will find it useful or it will stimulate discussion. There are myriad styles of management. I am outlining here what facets of my style I can think of. There are parallels between this post and my earlier one on “success”, but I’ve tried to eliminate overlap.

Stomach-Churning Rating: 0/10 but no photos, long-read, bullet points AND top 10 list. A different kind of gore.

Successfully managing a large (for my field) research team leaves one with fewer choices than in a smaller team– in the latter case, you can be almost anywhere on the spectrum of hands-off vs. hands-on management and things may still go fine (or not). In the case of a large (and interdisciplinary) team, there’s no possibility to be heavily hands-on, especially with so many external collaborations piled on top of it all. So a balance has to be struck somewhere. As a result, inevitably I am forced into a managerial role where, over the years, I’ve become less directly in touch with the core methods we use, in terms of many nitty-gritty details. I’ve had to adapt to being comfortable with (1) emphasizing a big picture view that keeps the concepts at the forefront, (2) taking the constraints (e.g. time, technology and methods, which I do still therefore have to keep tabs on) into account in planning, (3) cultivating a level of trust in each team member that they will do a good job (also see “loyalty” below), and (4) maintaining the right level of overall expertise within the group (including external collaborators) that enables us to get research done to our standard. To do these things, I’ve had to learn to do these other things, which happen to form a top 10 list but are in no order:

  1. Communicate regularly– I’m an obsessive, well-organized emailer, in particular. E-mail is how I manage most of my collaborations within and outside my team, and how I keep track of much of the details. (Indeed, collaborators that aren’t so consistent with email are difficult for me) We do regular weekly team meetings in which we go around the table and review what we’re up to, and I do in-person chats or G+/Skype sessions fairly frequently to keep the ball rolling and everyone in synch. I now keep a notebook, or “memory cane” as I call it, to document meetings and to-do lists. Old school, but it works for me whereas my mental notebook started not to at times.
  2. Treat each person individually- everyone responds best to different management styles, so within my range of capabilities I vary my approach from more to less hands-off, or gentler vs. firmer. If people can handle robust criticism, or even if they can’t but they need to hear it, I can modulate to deliver that, or try to avoid crushing them. While I have high expectations of myself and those I work with, I also know that I have to be flexible because everyone is different.
  3. Value loyalty AND autonomy– Loyalty and trust matter hugely to me as a manager/collaborator. I believe in paying people back (e.g. expending a lot of effort in helping them move their career forward) for their dedicated work on my team, but also keeping in mind that I may need to make “sacrifices” (e.g. give them time off for side-projects I’m not involved in) to help them develop their career. I seek to avoid the extremes: fawningly helpless yes-men (rare, actually) or ~100% selfish what’s-in-it-for-me’s (not as rare but uncommon). Any good outcome can benefit a research manager even if they’re not a part of it, but also on a big team it’s about more than what benefits the 1st author or the senior author, but everyone, which is a tricky balance to attain.
  4. Prioritize endlessly– for me this means trying to keep myself from being the rate-limiting step in research. And I try to say “no” to new priorities if they don’t seem right for me. Sometimes it means getting little things done first to clear my desk (and mind) for bigger tasks; sometimes it means focusing on big tasks to the exclusion of smaller ones. Often it depends on my whims and energy level, but I try to keep those from harming others’ research. I make prioritized to-do lists and revisit them regularly.
  5. Allow chaos and failure/imperfection– This is the hardest for me. My mind does not work like a stereotypical accountant’s- I like a bit of disorder, as my seemingly messy office attests to. Oddly within that disorder, I find order, as my brain is still usually good at keeping things organized. I do like a certain level of involvement in research, and I get nervous when I feel that sliding down toward “uninvolved”– loss of control in research can be scary. Some degree of detachment, stepping aside and allowing for time to pass and people to self-organize or come ask for help to avoid disaster (or celebrate success), is necessary, though, because I cannot be everywhere at once and nothing can be perfect. And of course, I myself fail sometimes, but with alertness comes recognition and learning. Furthermore, too much control is micromanagement, which hurts morale, and “disorder” allows the flexibility that can bring serendipitous results (or disaster). And speaking of disaster, one has to be mentally prepared for it, and able to take a deep breath and react in the right way when it comes. Which leads to…
  6. Think brutally clearly – Despite all the swirling chaos of a large research team and many other responsibilities of an academic and father and all that, I have taught myself a skill that I point to as a vital one. I can stop what I’m doing and focus very intensely on a problem when I need to. If it’s within my expertise to solve it, by clearing my head (past experience with kendo, yoga and karate has helped me to do this), I usually can do it if I enter this intensely logical, calm, objective quasi-zen-state. I set my emotions aside (especially if it is a stressful situation) and figure out what’s possible, what’s impossible, and what needs to be done, and find what I think is the best course of action quite quickly, then act on that decisively (but without dogmatic inflexibility). In such moments, I find myself thinking “What is the right thing to do here?” and I almost instinctively know when I can see that right thing. At that moment I get a charge of adrenaline to act upon it, which helps me to move on quickly. From little but hard decisions to major crises, this ability serves me very well in my whole life. I maintain a duality between that singleminded focus and juggling/anarchy, often able to quickly switch between those modes as I need to.
  7. Work hardest when I work best (e.g. good sleep and caffeination level, mornings)- and let myself slack off when I’m not in prime working condition. I shrug aside guilt if I am “slacking”– I can’t do everything and some things must fall by the wayside if I can’t realistically resolve them in whatever state of mind I’m in. The slacking helps me recharge and refresh– by playing a quick video game or checking social media or cranking up some classic Iron Maiden/modern Menzingers, I can return to my work with new gusto, or even inspiration, because…
  8. Spend a lot of time thinking while I “slack off”, in little bursts (e.g. while checking Twitter). I let my brain process things that are going on, let go of them when I’m not getting anywhere with them, and return to them later. This is harder than it sounds as I still stubbornly or anxiously get stuck on things if they are stressing me out or exciting me a lot. But I am progressively improving at this staccato-thinking skill.
  9. Points 7+8 relate to my view that there is no “work-life balance” for me—it is all my life, and there’s still a lot of time to enjoy the non-work parts, but it’s all a blend that lets me be who I am.
  10. Be human– try to avoid acting like a distant, emotionless robotic manager and cultivate more of a family-like team. Being labelled with the word “boss” can turn my stomach. “Mentor” and “collaborator” are more like what I aim for. Being open about my own flaws, failures, and life helps.

Long post, yeah! 1 hour on a train commute lets the thoughts flow. I hope that if you made it this far you found it interesting.

What do you do if you manage a team, what works for you or what stories do you have of research management? Celebrations and post-mortems are equally welcome.

Read Full Post »

This post was just published yesterday in a shorter, edited form in The Conversation UK, with the addition of some of my latest thoughts and the application of the editor’s keen scalpel. Check that out, but check this out too if you really like the topic and want the raw original version! I’ve changed some images, just for fun. The text here is about 2/3 longer.

Recently, the anatomy of animals comes up a lot, at least implicitly, in science news stories or internet blogs. Anatomy, if you look for it, is everywhere in organismal and evolutionary biology. The study of anatomy has undergone a renaissance lately, in a dynamic phase energized by new technologies that enable new discoveries and spark renewed interest. It is the zombie science, risen from what some had assumed was its eternal grave!

Stomach-Churning Rating: 4/10; there’s a dead elephant but no gore.

My own team has re-discovered how elephants have a false “sixth toe” that has been a mystery since it was first mentioned in 1710, and we’ve illuminated how that odd bit of bone evolved in the elephant lineage. This “sixth toe” is a modified sesamoid kind of bone; a small, tendon-anchoring lever. Typical mammals just have a little nubbin of sesamoid bone around their ankles and wrists that is easily overlooked by anatomists, but evolution sometimes co-opts as raw material to turn into false fingers or toes. In several groups of mammals, these sesamoids lost their role as a tendon’s lever and gained a new function, more like that of a finger, by becoming drastically enlarged and elongated during evolution. Giant pandas use similar structures to grasp bamboo, and moles use them to dig. We’ve shown that elephants evolved these giant toe-like structures as they became larger and more terrestrial, starting to stand up on tip-toe, supported by “high-heels” made of fat. Those fatty heels benefit from a stiff, toe-like structure that helps control and support them, while the fatty pads spread out elephants’ ponderous weight.

Crocodile lung anatomy and air flow, by Emma Schachner.

Crocodile lung anatomy and air flow, by Emma Schachner.

I’ve also helped colleagues at the University of Utah (Drs. Emma Schachner and Colleen Farmer) reveal, to much astonishment, that crocodiles have remarkably “bird-like” lungs in which air flows in a one-way loop rather than tidally back and forth as in mammalian lungs. They originally discovered this by questioning what the real anatomy of crocodile lungs was like- was it just a simple sac-like structure, perhaps more like the fractal pattern in mammalian lungs, and how did it work? This question bears directly on how birds evolved their remarkable system of lungs and air sacs that in many ways move air around more effectively than mammalian lungs do. Crocodile lungs indicate that “avian” hallmarks of lung form and function, including one-way air flow, were already present in the distant ancestors of dinosaurs; these traits were thus inherited by birds and crocodiles. Those same colleagues have gone on to show that this feature also exists in monitor lizards, raising the question (almost unthinkable 10-20 years ago) of whether those bird-like lungs are actually a very ancient and common feature for land animals.

Speaking of monitor lizards, anatomy has revealed how they (and some other lizards) all have venom glands that make their bites even nastier, and these organs probably were inherited by snakes. For decades, scientists had thought that some monitor lizards, especially the huge Komodo dragons, drooled bacteria-laden saliva that killed their victims with septic shock. Detailed anatomical and molecular investigations showed instead that modified salivary glands produced highly effective venom, and in many species of lizards, not just the big Komodos. So the victims of numerous toothy lizard species die not only from vicious wounds, but also from worsened bleeding and other circulatory problems promoted by the venomous saliva. And furthermore, this would mean that venom did not evolve separately in the two known venomous lizards (Gila monster and beaded lizard) and snakes, but was inherited from their common ancestor and became more enhanced in those more venomous species—an inference that general lizard anatomy supports, but which came as a big surprise when revealed by Bryan Fry and colleagues in 2005.

There’s so much more. Anatomy has recently uncovered how lunge-feeding whales have a special sense organ in their chin that helps them detect how expansive their gape is, aiding them to engulf vast amounts of food. Scientists have discovered tiny gears in the legs of leafhoppers that help them make astounding and precise leaps. Who knew that crocodilians have tiny sense organs in the outer skin of their jaws (and other parts of their bodies) that help them detect vibrations in the water, probably aiding in communication and feeding? Science knows, thanks to anatomy.

Just two decades or so ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject; both among scientists and the general public. What happened? Why did anatomy “die” and what has resuscitated it?

 

TH Huxley, anatomist extraordinaire

TH Huxley, anatomist extraordinaire, caricatured in a lecture about “bones and stones, and such-like things” (source)

Anatomy’s Legacy

In the 16th through 19th centuries, the field of gross anatomy as applied to humans or other organisms was one of the premier sciences. Doctor-anatomist Jean Francois Fernel, who invented the word “physiology”, wrote in 1542 that (translation) “Anatomy is to physiology as geography is to history; it describes the theatre of events.” This theatric analogy justified the study of anatomy for many early scientists, some of whom also sought to understand it to bring them closer to understanding the nature of God. Anatomy gained impetus, even catapulting scientists like Thomas Henry Huxley (“Darwin’s bulldog”) into celebrity status, from the realisation that organisms had a common evolutionary history and thus their anatomy did too. Thus comparative anatomy became a central focus of evolutionary biology.

But then something happened to anatomical research that can be hard to put a finger on. Gradually, anatomy became a field that was scoffed at as outmoded, irrelevant, or just “solved”; nothing important being left to discover. As a graduate student in the 1990s, I remember encountering this attitude. This apparent eclipse of anatomy accelerated with the ascent of genetics, with anatomy reaching its nadir in the 1950s-1970s as techniques to study molecular and cellular biology (especially DNA) flourished.

One could argue that molecular and cellular biology are anatomy to some degree, especially for single-celled organisms and viruses. Yet today anatomy at the whole organ, organism or lineage level revels in a renaissance that deserves inspection and reflection on its own terms.

 

Anatomy’s Rise

Surely, we now know the anatomy of humans and some other species quite well, but even with these species scientists continue to learn new things and rediscover old aspects of anatomy that laid forgotten in classic studies. For example, last year Belgian scientists re-discovered the anterolateral ligament of the human knee, overlooked since 1879. They described it, and its importance for how our knees function, in novel detail, and a lot of media attention was drawn to this realisation that there are some things we still don’t understand about our own bodies.

A huge part of this resurgence of anatomical science is technology, especially imaging techniques- we are no longer simply limited to the dissecting knife and light microscope as tools, but armed with digital technology such as 3-D computer graphics, computed tomography (series of x-rays) and other imaging modalities. Do you have a spare particle accelerator? Well then you can do amazing synchrotron imaging studies of micro-anatomy, even in fairly large specimens. Last year, my co-worker Stephanie Pierce and colleagues (including myself) used this synchrotron approach to substantially rewrite our understanding of how the backbone evolved in early land animals (tetrapods). We found that the four individual bones that made up the vertebrae of Devonian tetrapods (such as the iconic Ichthyostega) had been misunderstood by the previous 100+ years of anatomical research. Parts that were thought to lie at the front of the vertebra actually lay at the rear, and vice versa. We also discovered that, hidden inside the ribcage of one gorgeous specimen of Ichthyostega, there was the first evidence of a sternum, or breastbone; a structure that would have been important for supporting the chest of the first land vertebrates when they ventured out of water.

Recently, anatomists have become very excited by the realization that a standard tissue staining solution, “Lugol’s” or potassium iodide iodine, can be used to reveal soft tissue details in CT scans. Prior to this recognition, CT scans were mainly used in anatomical research to study bone morphology, because the density contrast within calcified tissues and between them and soft tissues gives clearer images. To study soft tissue anatomy, you typically needed an MRI scanner, which is less commonly accessible, often slower and more expensive, and sometimes lower resolution than a CT scanner. But now we can turn our CT scanners into soft tissue scanners by soaking our specimens in this contrast solution, allowing highly detailed studies of muscles and bones, completely intact and in 3D. Colleagues at Bristol just published a gorgeous study of the head of a common buzzard, sharing 3D pdf files of the gross anatomy of this raptorial bird and promoting a new way to study and illustrate anatomy via digital dissections- you can view their beautiful results here. Or below (by Stephan Lautenschlager et al.)!

Buzzard-head

These examples show how anatomy has been transformed as a field because we now can peer inside the bodies of organisms in unprecedented detail, sharing and preserve those data in high-resolution digital formats. We can do this without the concern that a unique new species from Brazilian rainforests or exciting fossil discovery from the Cambrian period would be destroyed if we probed certain questions about its anatomy that are not visible from the outside– a perspective in which science had often remained trapped for centuries. These tools became rapidly more diverse and accessible from the 1990s onward, so as a young scientist I got to see some of the “before” and “after” influences on anatomical research—these have been very exciting times!

When I started my PhD in 1995, it was an amazing luxury to first get a digital camera to use to take photographs for research, and then a small laser scanner for making 3D digital models of fossils, with intermittent access to a CT scanner in 2001 and now full-time access to one since 2003. These stepwise improvements in technology have totally transformed the way I study anatomy. In the 1990s, you dissected a specimen and it was reduced to little scraps; at best you might have some decent two-dimensional photographs of the dissection and some beetle-cleaned bones as a museum specimen. Now, we CT or MRI scan specimens as routine practice, preserving many mega- or gigabytes of data on its internal and external, three-dimensional anatomy in lush detail, before scalpel ever touches skin. Computational power, too, has grown to the point where incredibly detailed 3D digital models produced from imaging real specimens can be manipulated with ease, so science can better address what anatomy means for animal physiology, behaviour, biomechanics and evolution. We’re at the point now where anatomical research seems no longer impeded by technology– the kinds of questions we can ask are more limited by access to good anatomical data (such as rare specimens) than by the ways we acquire and use those data.

My experience mirrors my colleagues’. Larry Witmer at Ohio University in the USA, past president of the International Society for Vertebrate Morphologists, has gone from dissecting bird heads in the 1990s to becoming a master of digital head anatomy, having collected 3D digital scans of hundreds of specimens, fossil and otherwise. His team has used these data to great success, for example revealing how dinosaurs’ fleshy nostrils were located in the front of their snouts (not high up on the skull, as some anatomists had speculated based on external bony anatomy alone). They have also contributed new, gorgeous data on the 3D anatomy of living animals such as opossums, ostriches, iguanas and us, freely available on their “Visible Interactive Animal” anatomy website. Witmer comments on the changes of anatomical techniques and practice: “For extinct animals like dinosaurs, these approaches are finally putting the exploration of the evolution of function and behavior on a sound scientific footing.

I write an anatomy-based blog called “What’s in John’s Freezer?” (haha, so meta!), in which I recount the studies of animal form and function that my research team and others conduct, often using valuable specimens stored in our lab’s many freezers. I started this blog almost two years ago because I noticed a keen interest, or even hunger for, stories about anatomy amongst the general public; and yet few blogs explicitly were about anatomy for its own sake. This interest became very clear to me when I was a consultant for the BAFTA award-winning documentary series “Inside Nature’s Giants” in 2009, and I was noticing more documentaries and other programmes presenting anatomy in explicit detail that would have been considered too risky 10 years earlier. So not only is anatomy a vigorous, rigorous science today, but people want to hear about it. Just in recent weeks, the UK has had “Dissected” as two 1-hour documentaries and “Secrets of Bones” as back-to-back six 30-minute episodes, all very explicitly about anatomy, and on PRIME TIME television! And PBS in the USA has had “Your Inner Fish,” chock full of anatomy. I. Love. This.

Before the scalpel: the elephant from Inside Nature's Giants

Before the scalpel: the elephant from Inside Nature’s Giants

There are many ways to hear about anatomy on the internet these days, reinforcing the notion that it enjoys strong public engagement. Anatomical illustrators play a vital role now much as they did in the dawn of anatomical sciences– conveying anatomy clearly requires good artistic sensibilities, so it is foolish to undervalue these skills. The internet age has made disseminating such imagery routine and high-resolution, but we can all be better about giving due credit (and payment) to artists who create the images that make our work so much more accessible. Social media groups on the internet have sprung up to celebrate new discoveries- watch the Facebook or Twitter feeds of “I F@*%$ing Love Science” or “The Featured Creature,” to name but two popular venues, and you’ll see a lot of fascinating comparative animal anatomy there, even if the word “anatomy” isn’t necessarily used. I’d be remiss not to cite Emily Graslie’s popular, unflinchingly fun social media-based explorations of gooey animal anatomy in “The Brain Scoop”. I’d like to celebrate that these three highly successful disseminators of (at least partly) anatomical outreach are all run by women—anatomical science can (and should!) defy the hackneyed stereotype that only boys like messy stuff like dissections. There are many more such examples. Anatomy is for everyone! It is easy to relate to, because we all live in fleshy anatomical bodies that rouse our curiosity from an early age, and everywhere in nature there are surprising parallels with — as well as bizarre differences from — our anatomical body-plans.

 

Anatomy’s Relevance

What good is anatomical knowledge? A great example comes from gecko toes, but I could pick many others. Millions of fine filaments, modified toe scales called setae, use micro-molecular forces called van der Waals interactions to help geckos cling to seemingly un-clingable surfaces like smooth glass. Gecko setae have been studied in such detail that we can now create their anatomy in sufficient detail to make revolutionary super-adhesives, such as the product “Geckskin”, 16 square inches of which can currently suspend 700 pounds aloft. This is perhaps the most famous example from recent applications of anatomy, but Robert Full’s Poly-Pedal laboratory at Berkeley, among many other research groups excelling at bio-inspired innovation in robotics and other fields of engineering and design, regularly spins off new ideas from the principle that “diversity enables discovery”, as applied to the sundry forms and functions found in organisms. By studying the humble cockroach, they have created new ways of building legged robots that can scour earthquake wreckage for survivors or explore faraway planets. By asking “how does a lizard use its big tail during leaping?” they have discovered principles that they then use to construct robots that can jump over or between obstacles. Much of this research relates to how anatomical traits determine the behaviours that a whole, living, dynamic organism is capable of performing.

Whereas when I was a graduate student, anatomists and molecular biologists butted heads more often than was healthy for either of them, competing for importance (and funding!), today the scene is changing. With the rise of “evo devo”, evolutionary developmental biology, and the ubiquity of genomic data as well as epigenetic perspectives, scientists want to explain “the phenotype”—what the genome helps to produce via seemingly endless developmental and genetic mechanisms. Phenotypes often are simply anatomy, and so anatomists now have new relevance, often collaborating with those skilled in molecular techniques or other methods such as computational biology. One example of a hot topic in this field is, “how do turtles build their shells and how did that shell evolve?” To resolve this still controversial issue, we need to know what a shell is made of, what features in fossils could have been precursors to a modern shell, how turtles are related to other living and extinct animals, how a living turtle makes its shell, and how the molecular signals involved are composed and used in animals that have or lack shells. The first three questions require a lot of anatomical data, and the others involve their fair share, too.

Questions like these draw scientists from disparate disciplines closer together, and thanks to that proximity we’re inching closer to an answer to this longstanding question in evolutionary biology and anatomy, illustrated above in the video.  As a consequence, the lines between anatomists and molecular/cellular biologists increasingly are becoming blurred, and that synthesis of people, techniques and perspectives seems to be a healthy (and inevitable?) trend for science. But there’s still a long way to go in finding a happy marriage between anatomists and the molecular/cellular biologists whose work eclipsed theirs in past decades. Old controversies like “should we use molecules or morphology to figure out how animals are related to each other?” are slowly dying out, as the answer becomes evident to be “Yes. Both.” (especially when fossils can be included!) Such dwindling controversies contribute to the healing of disciplinary rifts and the unruffling of parochial feathers.

Yet many anatomists would point to lingering obstacles that give them concern for their future; funding is but one of them (few would argue that gross anatomical research is as well off in provision of funding as genetics is, for example). There are clear mismatches between the hefty importance, vitality, popularity and rigour of anatomical science and its perception or its role in academia.

Romane 1892, covering Haeckel's classic, early evo-devo work (probably partly faked, but still hugely influential)

Romane 1892, covering Haeckel’s classic, early evo-devo work (probably partly faked, but still hugely influential) (source)

 

Anatomy’s Future

One worry the trend that anatomy as a scientific discipline is clearly flourishing in research while it dwindles in teaching. Fewer and fewer universities seem to be teaching the basics of comparative anatomy that were a mainstay of biology programmes a century ago. Yet anatomy is everywhere now in biology, and in the public eye. It inspires us with its beauty and wonder—when you marvel at the glory of beholding a newly discovered species, you are captivated by its phenotypic pulchritude. Anatomy is still the theatre in which function and physiology are enacted, and the physical encapsulation of the phenotype that evolution moulds through interactions with the environment. But there is cause for concern that biology students are not learning much about that theatre, or that medical schools increasingly seem to eschew hands-on anatomical dissection in favour of digital learning. Would you want a doctor to treat you if they mainly knew human anatomy from a CGI version on an LCD screen in medical school, and hence were less aware of all the complexity and variation that a real body can house?

Anatomy has an identity problem, too, stemming from decades of (Western?) cultural attitudes (e.g. the “dead science” meme) and from its own success—by being so integral to so many aspects of biology, anatomy seems to have integrated itself toward academic oblivion, feeding the perception of its own obsolescence.  I myself struggled with what label to apply to myself as an early career researcher- I was afraid that calling myself an “anatomist” would render me quaint or unambitious in the eyes of faculty job interview panels, and I know that many of my peers felt the same. I resolved that inner crisis years ago and came to love identifying myself at least partly as an anatomist. I settled on the label “evolutionary biomechanist” as the best term for my speciality. In order to reconstruct evolution or how animals work (biomechanics), we first often need to describe key aspects of anatomy, and we still discover new, awesome things about anatomy in the process. I still openly cheer on anatomy as a discipline because its importance is so fundamental to what I do, and I am far from alone in that attitude. Other colleagues that do anatomical research use other labels for themselves like “biomechanist”, “physiologist,” or “palaeontologist”, because those words better capture the wide range of research and teaching that they do, but I bet also because some of them likely still fear the perceived stigma of the word “anatomy” among judgemental scientists, or even the public. At the same time, many of us get hired at medical, veterinary or biology schools/departments because we can teach anatomy-based courses, so there is still hope.

Few would now agree with Honoré de Balzac’s 19th century opinion that “No man should marry until he has studied anatomy and dissected at least one woman”, but we should hearken back to what classical scientists knew well: it is to the benefit of science, humanity and the world to treasure the anatomy that is all around us. We inherit that treasure through teaching; to abscond this duty is to abandon this trove. With millions of species around today and countless more in the past, there should always be a wealth of anatomy for everyone to learn from, teach about, and rejoice.

X-ray technology has revolutionized anatomical studies; what's next? Ponder that as this ostrich wing x-ray waves goodbye.

X-ray technology has revolutionized anatomical studies; what’s next? Ponder that as this ostrich wing x-ray waves goodbye.

Like this post? You might also find my Slideshare talk on the popularity of anatomy interesting- see my old post here for info!

Read Full Post »

Freezermas continues with track 3 of our rockin’ anatomy concept album! The number of the beast today is 5 (five days to go in Freezermas!), and I will deviate from the rock/metal theme to embrace the other side of the tracks: hip hop and rap. The Beastie Boys and I go way back: their “Licensed to Ill” album was the second cassette tape I bought (I remember proudly showing it off in Geometry class, circa 1986/7), and still ranks as one of my favourite albums ever. Everyone should own a copy of that, and of this next album…

The Five Felids, featuring KC

If only MCA were still alive to do this follow-up album…

The Beastie Boys’ superb, old school rap NYC-style (and themed) “To The Five Boroughs” (2004) satisfies my search for a #5-themed concept album/song. No track has that title, so I’m going with this one, “Triple Trouble” (song 3; day 3 of Freezermas… c’mon this is all just an excuse for me to talk about music I like and celebrate the concept album/freezers anyway!), as an introduction to a collaborative cat (felid) project we’ve started; and to continue the felid theme from Sunday (also be sure to check out the Snow Leopard dissection I posted on earlier!):

If You If You 
Wanna Know Wanna Know 
The real deal about the cats
Well let me tell you 
We’re felid funded ya’ll 
We’re gonna bring you some mad facts

(yes, that’s painful, I know… be relieved, I tried working some rap jargon into this post’s text but it just looked wack)

Dodgy-looking bagged-up skinned jaguar (bag-uar?) after delivery from Scotland.

Dodgy-looking bagged-up skinned jaguar (bag-uar?) after delivery from Scotland.

Anjali Goswami at University College London, myself, and Stephanie Pierce have teamed up to join the former’s skills in mammalian evolution, morphometrics, evo-devo and more together with our RVC team’s talents in biomechanics, evolution and modelling, and to apply them to resolving some key questions in felid evolution. We’ve hired a great postdoc from Bristol’s PhD programme, soon-to-be-Dr. Andrew Cuff, to do a lot of the experimental/modelling work, and then we have the marvellous Marcela Randau as a PhD student to tackle more of the morphometrics/evo-devo questions, which we’ll then tie together, as our Leverhulme Trust grant’s abstract explains:

“In studying the evolution of vertebrate locomotion, the focus for centuries has been on limb evolution. Despite significant evolutionary and developmental correlations among the limbs, vertebrae, and girdles, no biomechanical studies have examined the entire postcranial skeleton or explicitly considered the genetic and developmental processes that underly morphological variation, which are captured in phenotypic correlations. We propose to conduct experimental and geometric morphometric analyses of living and fossil cats, including the only large, crouching mammals, to study the evolution of locomotion, the mechanical consequences of size-related morphological evolution, and the evolution of correlations (modularity) in the postcranial musculoskeletal system.”

Above: snow leopard (headless) reconstructed and taken for a spin

Our study will integrate some prior studies from Anjali’s group, on modularity for example, and from my group, on the apparent lack of postural change with increasing size in felids (most other birds and mammals get more straight-legged as size increases, to aid in support, cats don’t– paper forthcoming). How does the neglected vertebral column fit into these limb-focused ideas? We’ll find out!

And it’s all very freezer-based research, using a growing stock of specimens that we’ve collected from zoo/park mortalities, many of which are kindly being supplied by Dr. Andrew Kitchener from the National Museums Scotland. We’ll be scanning, dissecting, measuring and modelling them and then returning the skeletons to be curated as museum specimens. This page features five sets of felid specimens involved in the research. We’ll be presenting plenty more about this research on this blog and elsewhere as it continues!

Above: ocelot from Freezermas day 1, now in 3D!

The Bag-o-Cats: whole specimens of a black-footed cat (Felis nigripes), juvenile cheetah, and juvenile snow leopard. I think. Sometimes you get a bag-o-cats and are not sure.

The Bag-o-Cats: x-ray CT slice showing whole specimens of a black-footed cat (Felis nigripes), juvenile cheetah, and juvenile snow leopard. I think. Sometimes you get a bag-o-cats and are not sure.

Panthera atrox (large American lion) from the NHM in LA. Oh yes we'll be applying our insights to strange extinct cats, too!

Panthera atrox (large American lion; “Naegele’s giant jaguar”) from the NHM in LA. Oh yes we’ll be applying our insights to strange extinct cats, too!

Read Full Post »

Hey, a short post here to say go check this new blog out! I love it. The first main post-introductory post is a dissection of a snow leopard, documenting a real vet case attempting to figure out why it died. The “Veterinary Forensics blog” is going cool places, and it is a kindred spirit to this blog. You might, as I do sometimes when walking into a veterinary pathology/postmortem facility, see surprising and rare stuff– like in this photo of urban foxes:

troop of foxes

 

Read Full Post »

Today, to help thaw you poor Americans out of that Arctic Vortex, we have a guest post bringing the heat, by my PhD student Sophie Regnault! This relates to some old posts about rhinos, which are a mainstay here at the WIJF blog- I’ve posted a lot about the rhino extinction crisisfeet, skin, big and bigger bones, and more, but this is our first rhinoceros-focused, actual published scientific paper! Take it away, Sophie! (We’re planning a few more “guest” blog posts from my team, so enjoy it, folks!)

Almost a year ago to the day, I submitted my first paper written with John Hutchinson and Renate Weller at the RVC and it has (finally!) just been published. To celebrate, I have been allowed to temporarily hijack ‘What’s in John’s Freezer?’ for my first foray into the world of blogging. I started the paper back as an undergraduate veterinary student. It was my first experience of proper research, and so enjoyable that I’m now doing a PhD, studying sesamoid bones like the patella!

We wanted to discover more about the types of bony disease rhinos get in their feet, of which there isn’t much known. Rhinos, of course, are big, potentially dangerous animals – difficult enough to examine and doubly difficult to x-ray clearly because of their thick skin. Unlike diseases which are fairly easy to spot (like abscesses or splitting of the nails and footpad), there is hardly anything out there in the scientific literature on bony diseases in rhino feet. It’s no small issue, either. When your feet each need to support over 900kg (typical for a large white rhino), even a relatively minor problem can be a major pain. Progressing unseen under their tough hide, lesions in the bone can eventually become so serious than the only solution is euthanasia, but even mild conditions can have negative consequences. For example, foot problems in other animals are known to have knock-on effects on fertility, which would be a big deal for programs trying to breed these species in captivity.

Hidden treasures abound!

Hidden treasures abound! (Photos can be clicked to embiggen)

Data gathering was a blast. I got to travel to Cambridge, Oxford, and London during one of England’s better summers, and these beautiful old museums were letting me snoop around their skeleton collections. I’d been there often as a visitor, but it was anatomy-nerd-heaven to go behind the scenes at the Natural History Museum, and to be left alone with drawers and drawers of fantastic old bones. Some of the specimens hadn’t been touched for decades – at Cambridge University Museum of Zoology, we opened an old biscuit tin filled with the smallest rhinoceros foot bones, only to realise they were wrapped in perfectly preserved 1940’s wartime Britain newspaper.

rhino-feet (2)

rhino-feet (4)

rhino-feet (3)

Osteomyelitis… (3 clickable pics above) the toe’s probably not meant to come off like that!

In addition to my museum studies, I had another fun opportunity to do hands-on research.  John (of course!) had freezers full of rhino legs (looking disconcertingly like doner kebabs, but maybe that’s just me!), which we CT scanned to see the bones. Although it is a pretty standard imaging technique, at this point I had only just started my clinical studies at the vet hospital, and being able to flick through CT scans felt super badass. Most vet students just get to see some horse feet or dog/cat scans, at best.

Another osteomyelitis fracture, visible in a CT scan.

Another osteomyelitis fracture, visible in a CT scan reconstruction.

We expected to find diseases like osteoarthritis (a degenerative joint disease) and osteomyelitis (bone infection and inflammation). Both had previously been reported in rhinoceroses, although it was interesting that we saw three cases of osteomyelitis in only 27 rhinos, perhaps making it a fairly common complication. It’s an ugly-looking disease, and in two of the cases led to the fat, fluffy bones fracturing apart.

We also had several unexpected findings, like flakes of fractured bone, mild dislocations, tons of enthesiophytes (bone depositions at tendon/ligament attachments) and lots of holes in the bones (usually small, occasionally massive). For me, writing up some of these findings was cool and freaky paranoid in equal measures. They hadn’t been much described before, and we were unsure of their significance. Was it normal, or pathological? Were we interpreting it correctly? Discussions with John and Renate (often involving cake) were reassuring, as was the realisation that in science (unlike vet school at the time, where every question seemed to have a concrete answer) you can never be 100% sure of things. Our study has a few important limitations, but has addressed a gap in the field and found some neat new things. Six months into my PhD, I’m enjoying research more than ever, and hoping that this paper will be the first of many (though I promise I won’t keep nicking John’s blog for my own shameless self-promotion if that happens!  EDIT BY JOHN: Please do!).

Nasty osteoarthritis wearing away the bone at the joint surface. Most cases occurred in the most distal joint.

Nasty osteoarthritis wearing away the bone at the joint surface. Most cases occurred in the most distal joint.

Deep holes in some of the bones: infection, injury?

Deep holes in some of the bones: infection, injury?

The paper:
Sophie Regnault, Robert Hermes, Thomas Hildebrandt, John Hutchinson, and Renate Weller (2013) OSTEOPATHOLOGY IN THE FEET OF RHINOCEROSES: LESION TYPE AND DISTRIBUTION. Journal of Zoo and Wildlife Medicine: December 2013, Vol. 44, No. 4, pp. 918-927.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 1,947 other followers