Feeds:
Posts
Comments

Posts Tagged ‘anatomy’

SupraHoloNet Transmission

Year 277 ABY, Fourth Imperial Age

Hoth System (location classified)

From: Dr. Zhonav Diphyryzas, Imperial Corps for Yesterday’s Misplaced Information; Knowledge Harvesters Unit; New Imperial Science Department

To: Dr. John of the Freezers, Unaligned World Contact #1314, Terran system

Subject: Functional Anatomy of Tatooine Megafauna

 

Dear Terran Science-Invigilator Dr. Freezers,

I write to you with the detailed correspondence I promised for your “blog carnival, whatever that is, and in honour of our Fourth Empire’s glorious leader Empress Syrrhosyx—may her inestimably wise and orderly rulership soon grace your distant world as it has our not-so-far-away galaxy. I hope that my Galactic translator continues to function properly with your crude technology. Our Empire’s embrace would grant your culture midi-chlorian-powered devices that would make our dialogue far simpler via intermental transmission, with minimal apparent side effects for you. You need not worry about the apocryphal stories that your people told about our first Imperial Age. That Skywalker kid was a terrorist, pure and simple. However, our inside sources reveal that the “documentary” in progress by the Terran named Jjabrams includes a rather accurate portrayal of the perfidious giant muromorph race from planet Dis’snai. “Baby steps”, as you say.

Our communications continue to be crippled by the mynock infestation that has plagued my orbital facility, and moreso by your own barbarian apparati. Thus the resolution of my images included here is a pale reflection of what our holo-imaging can achieve. But your readers can click the images to enhance their magnitude.

As the subject indicates, the transmission concerns my recent visit to the desert world of Tatooine, stimulated by investigations I conducted in the Corellian Science Museum. In that museum I found rare skeletal remains of the little-studied, reportedly extinct arthroreptile the Krayt Dragon (Tyrannodraconis tatooinensis by your archaic nomenclature). I’ll revisit this further below, because a subsequent discovery changed everything for me. I just wanted to whet your appetite, and this image of museum specimens of krayt dragons may do so:

Two fragmentary skeletons of small Krayt Dragons, from the Corellian Science Museum. (Image source here)

Two fragmentary skeletons of small Krayt Dragons, from the Corellian Science Museum. (Image source here) Note their short necks and quadrupedal limbs.

With growing fascination for the large land vertebratomorphs that are so startlingly diverse on Tatooine, I secured Imperial funding for an expedition to Tatooine, to survey the exotic megafauna and search for fossils of Tyrannodraconis that might further illuminate their evolution. My ensuing report summarizes my trilogy of investigations and discoveries from this “holiday in the suns”:

 

Stormtrooper on a Dewback in the Eastern Dune Sea (image source here).

Stormtrooper on a Dewback in the Eastern Dune Sea (image source here). Note how gracile the limbs are below the elbows/knees.

Investigation 1. Dissection of a Dewback, Mos Eisley

My ample funding (I’m sure you’re jealous) secured and stocked a laboratory for me in the colourful Mos Eisley spaceport, which has seen unprecedented commercial influx in recent years and now largely serves as an adventure park for hyperspace tourists (funded in part by the muromorphs of planet Dis’snai). With coliseum seating for a gathered host of some 1.6 million curiously slavering punters and drunken local yokels, I completed a full dissection of a fresh adult dewback (Iguanomorphus homoplasticus) specimen, illustrated below at its climax: exposure of the great fat body of the tail and the large caudofemoral muscle in the left thigh.  (curse this infernal Jawa 37C-H4 sketching droid’s malfunctions!)

Jawa 37C-H4 sketching droid illustration: My dissection of a common dewback, showing the caudofemoral muscle and tendon, tail fat body, and fibrous pads used while resting on the sand.

Jawa 37C-H4 sketching droid illustration: My dissection of a common dewback, showing (ventral view) the caudofemoral muscle and tendon, tail fat body (obscured by the nearby muscle), and fibrous pads used while resting on the sand.

My main observations support those of prior scholars, even from the Rebel Alliance era (bucking the trend of having to correct all their mistakes!): dewbacks have earned their moniker well by the characteristic water-condensing tissues on their dorsal surfaces. Microdroid explorations of these tissues, which lie within a dimpled midline ridge, house a high density of capillaries in a countercurrent network that surrounds a large number of specialised pores, or stomata, which smooth muscular rings contract to pull open when humidity, temperature and shade are best suited to cooling the surrounding air (via air currents encouraged by the stomata, and by local cooling via the capillary rete).

Previous scholars overlooked this mechanism, which conducts excessive warmth to the heat-emanative fat bodies in the bulky tail and the neck hump (my dissections nicely revealed these; similar tissues are concentrated in the foot pads and sternal pad). The mechanism also allows the body to be up to 20% cooler than the ambient air; an analogous adaptation to that seen in the banthas (below). My peers also failed to realize that the social nature of the dewback is key to its water conservation: while the stomatal rete can draw in some condensed water, it is far more effectively ingested by licking the backs of fellow dewbacks. Lone dewbacks thus are more prone to dehydration. The night-time group-huddling habits of dewbacks to conserve heat that they would otherwise too easily shed in the cool night air is yet another testament to the benefits of their sociality.

As ectotherms, dewbacks are slaves to the hot-cool cycles of the Tatooine wastes, but their sociality liberates them. Further escape comes from their large size (>800 kilograms of Terran mass units), which renders them mostly homeothermic, but never endothermic like some of your otherwise unimpressive Terran reptiles of past or present.

A laser-histology trek by microdroids showed the “scaled” hide around the rest of the body to be composed of siliceous material embedded in the thickly fibrous connective tissue of the skin, forming stereotyped arrowhead-shaped “siliceoderms”, as I term them, shown below.

Curious microstructure of the small "siliceoderms" from dewback skin that I have described-- single 'derm on the left, multiple 'derms surrounding a stomata on the right.

Curious microstructure of the small “siliceoderms” from dewback skin that I have described– single ‘derm on the left, multiple ‘derms surrounding a stoma on the right. To see these structures, one must view the “scales” at high magnification, ideally with microdroids.

I surmise that: (1) these siliceoderms are formed of fused Tatooine sand grains; (2) the grains become embedded into the soft, pliable skin as dewbacks grow, giving them insulation and physical protection; (3) young dewbacks display a previously mysterious behaviour of “sand-rolling” that encourages this embedding during the maturation of a dewback; and (4) the high strength and stiffness of this composite skin not only armours dewbacks but also pressurizes them, ensuring that blood can circulate through their large bodies without backflow or clotting issues, particularly in their gracile lower limbs, which are themselves passively supported by their skin tissues.

With your interest in animal locomotion, you may be curious about tales of how dewbacks can outrun landspeeders, especially in poor weather or terrain conditions. The skin-stiffening agents noted above surely play an important role in this. Indeed, much like your terrestrial varanid lizards, dewbacks do not follow the usual trend of straightening their limbs to support their body more effectively at larger body sizes (improving “effective mechanical advantage” as your field terms it), but they do draw them more closely under the body rather than remain sprawling. I revisit the matter of limb posture toward the end of my transmission.

Furthermore, the huge caudofemoral muscle shown above is able to transmit force from the tail to the thigh, and then its thick tendon transmits the force down the limb to the feet, acting as one strong limb extensor that powers and supports locomotion. No Terran animal does it so well. Banish any thoughts of how the dewback’s wrists and ankles seem implausibly thin– they are pressurized cylinders of dense tendon and bone, more like a Terran horse’s distal limbs than any lizard’s, and linked to far larger tail-to-thigh muscles. The expansive foot pads and reversed first toe (hallux; as in your Terran birds but with no association to arboreality) likewise give dewbacks a stable base of support and spread out their weight over the treacherous desert sands, reducing the work otherwise lost to deforming the sand’s surface and also keeping pressures on their feet at safe levels. Thus dewbacks have many features that explain their reputation for bursts of fast speed (~14 Terran meters/second or 50 kph/30 mph).

Yet whilst during the daytime and over short distances dewbacks can outpace banthas or humanoids on foot, their ectothermic nature causes them to accumulate fatigue too quickly, and thus they must rest. So sans cybernetic enhancements, dewbacks will never be winning any podraces. Nonetheless, I am sure you are awed by how Tatooine’s native reptiliforms, the dewbacks, exceed any living Terran reptile in their size and extreme adaptations to aridity. I have not even described the variations seen in feral, grizzled, cannibal or mountain dewback species, which can surpass the common desert dewback’s. Toward the end of my transmission I will show you animals that exceed even the greatest dinosaurs in sheer glory and ferocity.

Unlike the durable Tauntauns of my home system’s ice planet Hoth, however, dewbacks are ill-suited to cold climates because they are adapted to shed heat, not gain it. But the insulation of the next animal shows a more versatile performance…

 

Convincing image of a Bantha being ridden by a Sand-Person, from your world's fake documentary "Star Wars Episode IV: A New Hope", from Lucasfilm/Twentieth Century Fox.

Convincing image of a Bantha being ridden by a Tusken Raider/Sand-Person, from your world’s Rebel propaganda film “Star Wars Episode IV: A New Hope”, by Lucasfilm/Twentieth Century Fox.

Investigation 2. Field Dissection of a Bantha Bull

My anatomical study of a large male bantha (Megalingua feteoclunis) was hastened by not only the merciless heat but also by the imminent arrival of a horde of ravenous womp rats. Some quick incisions with my relict lightsaber sped my work. I focused my attention on three issues of scholarly interest: its marvellous tongue and glossopharyngeal adaptations (how does such a tall animal eat in a world that is far below it?), its hirsute integumentary system (what lies under that thick fur and how do banthas cope with the heat while wearing many wookies worth of wooly warmth?) and its peculiar, pillar-like limbs. The spiralling horns that add rings as the bantha grows, the nuchal ligament that supports the heavy head and neck, and the convoluted, multi-partitioned digestive tract that wrenches every last bit of nutrition from the lichens and other flora hidden beneath Tatooine sands are better understood. And with this bull I had no opportunity to study where the famous blue bantha milk comes from, but I have heard stories and no Terran mammal-esque udders are involved, let me tell you that much…

Anatomy of the oral apparatus of the Bantha, which I correct in my report although it is largely right (but how, Terran?). (source)

Anatomy of the oral apparatus of the Bantha, which I correct in my report although it is largely right (but how, Terran authors Terryl Whitlatch and Bob Carrau?). (source)

I don’t know how your Terran science-invigilators managed to get accurate information on bantha tongue anatomy (above) but I have to credit them, they almost got it right. With your can-do attitudes combined with your bungling mistakes, you’d make good Fourth Rebel Alliance members, but don’t get any new hopes. However, as the illustration below shows (and I had to leave the guts in the picture for their sheer impressiveness!), the tongue-projection mechanism extends not around the rear of the skull (occiput) and into the eyes or sinuses, but far back along the giant, spar-like breastbone (sternum) to the hips (pelvis, or propubis).

That mechanism’s powerful projection can extend the tongue as far as 3 Terran meters (10 feet). The tongue is expelled by stretching and then releasing (slowly for precise control, or quickly for a catapult action) a fibrous sac that surrounds the base of the tongue, and this sac then recoils elastically when released to withdraw the tongue. I’ve studied your Terran elephant and chameleon and it combines aspects of both of these, with the tongue having several layers of fine muscle fibres as in the former animal, and the “power amplifier” catch mechanism of the latter, thus providing a superior combination of control and speed. All of these are rightly called muscular hydrostats, but the bantha’s is the best.  You might mention your Terran pangolin as a counter-example, but does that little creature have the spiracle-bearing, ultrasensitive chemosensory tongue and majestic size of the bantha? No. I rest my case.

Jawa 37C-H4 sketching droid illustration: My dissection of a bantha, showing the tongue attachments (note the distal bifurcation), digestive tract and foot structure. The colour variations in the digestive tract seem to be produced by commensal arthroreptiles.

Jawa 37C-H4 sketching droid illustration: My dissection of a bantha, showing the tongue attachments (note the distal bifurcation), digestive tract and foot structure. The colour variations in the digestive tract seem to be produced by commensal arthroreptiles.

A naïve Terran like yourself might wonder why, of all things, a giant desert mammal such as the bantha would evolve to be clothed in thick fur. Here you would reveal your feeble way of grasping about the diversity of pangalactic Nature. First of all, banthas are not mammals as you know them; a Terran word like pseudomammal would suffice. They lack the diagnostic traits of mammary glands, true hair, and inner ear bones that diagnose the Mammalia of your homeworld, but evolution at a giant size in a hot, dry clime has chastened them to become at least superficially similar to a Terran mammal such as an elephant or mammoth. One might be so naïve, even, to think that a bantha is merely a proboscidean in hairy disguise, but drive such thoughts from your rickety cerebral-implant-deprived mind.

Behold, the true nature of bantha fur, as I have seen with microdroid holo-imaging: it is a second, external circulatory system of sorts. Simply put, the hairs have a thermo-conductive submolecular structure that deflects heat (and even, to a degree, the energy of a blaster) and traps cooler air near the body with an intricate network of cross-linking of barbed fibers more like a Terran bird’s feathers than mammalian hair. In this cooler locale, tracts of spongy skin tissue collect condensed water and direct it to absorbent epithelial beds on the chin and lips, belly, and toes, where the bantha imbibes it, or simply sheds it off to carry further heat away. Thus here we have a fascinating case of convergent evolution with the reptiliform dewbacks, but surpassing even that animal’s adaptation and evolving what you would likely call an air-conditioning system. Banthas cool themselves by circulating a slick of cool water around their body inside a heat-resistant fluffy outer mesh. Whether their horn tissues or tails contribute to this system is yet to be investigated.

Lastly, I have conducted holo-viewings of the biomechanics of bantha gaits from numerous remote studies of wild and Sand People-ridden animals, in light of my own dissections of this bull. What strikes me is the phenomenal convergence with giant quadrupeds on your homeworld: like sauropods, elephants and other species, banthas have evolved “graviportal” or weight-bearing adaptations: (1) limbs that are proportionately longest above the elbow and knee, not distally elongated as in “cursorial” animals; (2) heavy, robust bones that lack much of a marrow space; (3) short, thickly padded feet ending in bulky claws or hooves (three toes in the case of banthas); (4) an emphasis on lateral sequence (left hind-left front-right hind-right front) footfalls when walking, extended to a slightly bouncing, rolling “amble” at faster speeds; (5) strongly vertical limbs when walking, using the limbs more like pillars to support the weight more effectively; and (6) slow maximal speeds, limited to ~7 Terran meters/second (24 kph/15mph) at best.

At around 4000 kg of typical body mass, banthas overlap with the masses of your planet’s erstwhile giants that have such features. I did not uncover any “predigits” supporting the feet of banthas as you had in elephants; rather, their “heels” involve dense fibro-elastic cartilage, which works analogously to give shock-absorbing and resilient properties to the feet. This suite of graviportal features reinforces an idea that is now recognized pan-galactically: At huge sizes, land animals must act relatively more constrained by gravity, becoming forced to adapt more aspects of their biology to resist its pull, lest they strain muscles, break bones, snap tendons, or fall and injure themselves. Thus the convergent evolution of banthas and elephants is no surprise. But is there another way to be an imposing giant? Perhaps…

 

Investigation 3. On some remains of the “extinct” Krayt Dragon

Ever since I left my home system, thoughts kept tumbling through my mind like rocks in an asteroid field, concerning the krayt dragon bones I had viewed in the museum on Corellia. With the krayt (Tyrannodraconis sp.) lineage reported extinct since at least the year 22 ABY, following much publicity of its awesome nature, its menace seemed now but a phantom. Consequently I could only fantasize of deeper study. That is, until a rumour came to me while resupplying in the well-preserved city of Bestine: not far off on the edge of the Jundland Wastes, a stormtrooper patrol had taken down a strange, enormous, multi-legged arthroreptile that had gone after their dewback mounts. A quick skyhopper flight and I was there, giddy with the adrenaline of impending discovery.

Another Terran artist renders a compelling illustration, of a Greater Krayt Dragon in life. Where indeed do they get their information from? Bothan spies, I suspect. (Source)

Another Terran artist (one of Terryl Whitlatch and Bob Carrau) renders a compelling illustration, of a Greater Krayt Dragon in life. Where indeed do they get their information from? Bothan spies, I suspect. (Source)

It was a magnificent carcass. Sandworms and scurriers were already attempting to scavenge it, but with little luck and easily driven off with a few shots from my carbine. No stormtroopers remained (alive, anyway), so I didn’t get any details of the fracas that led to this well-timed demise, but the blast points on its body were too precise for sandpeople, and characteristic dewback tracks were everywhere. Even my antique lightsaber seemed poorly up to the task of dissecting this titan: it was over 30 meters (100 feet) long and surely 100 tons of Terran mass if not more; on the scale of your sauropods, but so vastly different in other ways. Right away, from its tracks I could see it had a peculiar mode of movement in life: it had slid up to some rocky cover in these badlands, dragging its belly and bulk along with ten limbs that were slender in comparison to its body, but still each as big as a large bantha’s. I took a deep breath and cut into what was the first Greater Krayt Dragon seen in some 255 years.

Jawa 37C-H4 sketching droid illustration: My dissection of the Greater Krayt Dragon, to extract the Dragon Pearl. The stormtrooper shown forgot the tale that Krayts take 1 hour to die, and so got too close too soon.

Jawa 37C-H4 sketching droid illustration: My dissection of the Greater Krayt Dragon, to extract the Dragon Pearl. The stormtrooper shown forgot the tale that Krayts take 1 hour to die, and so got too close too soon.

If the bantha dissection was a rush job, this one was a sprint. Pockets of gas were forming and erupting while I sliced my way toward the bones and other organs of most interest, with the forces of decomposition slowly winning a race against my science. Oh, if only I’d had a Jawa sandcrawler to repurpose as a mobile freezer! And the sandworms and scurriers were still lurking about, with far nastier things surely soon to be drawn by the carnage out in these remote wastes. Those two days blurred exhaustion and inquiry and disgust and elation into a mire in my mind more pernicious than any on Dagobah. I’m no longer sure of what I saw– you’re probably wondering if I found the fabled krayt dragon pearl in the gizzard, and yes, there was one but I lost it somehow. Same with the venom sacs. Maybe I sipped from one of those; that would explain a lot. I made a sketch that I reproduce here, but then in a crazed, diaphonic state of dehydration and euphoria and frustration I am pretty sure I cut my sketching droid to pieces too, so this is all that remains to bolster my frazzled memories.

Now that I’ve recovered and ruminated, I have come to some conclusions. First, I am left doubting all the little we know about krayt dragons. It is said that they existed in canyon, normal and greater species, and the immense variation of curved horns, clawed limbs and flanged tails lent this taxonomy much credibility in the past. But, call it chronic heatstroke or inspiration as you may, what if all krayt “species” are just stages of a long and repeatedly metamorphic developmental sequence? As my graph below shows, and this is admittedly pieced together from what few museum specimens and documents I have since marshalled to test my hypothesis, krayt traits change uniformly with their body size. As they get bigger, krayt dragons get more multi-legged and longer-necked, diverging from the form of their relatives (in the evolutionary sense of your sciences, sister group or outgroup) from Ruutan, the Kell dragons. The genus Tyrannodraconis, more so than the Kell, betrays its arthroreptile ancestry with their spines, exoskeletal plates, and tendency for polypedality. Their sternum also elongates to support their chest as they change from lumbering, bantha-chasing quadrupeds to slithering, sarlacc-snatching octa- or decapedal behemoths.

Although based on little concrete data, my analysis of known Krayt and related specimens suggests that they change continuously during ontogeny, although leg number may shift more suddenly (I predict this happens during their first metamorphosis at sexual maturity). Strong allometric scaling of neck and total length is evident- if the two lengths scaled as mass^0.33 they would be maintaining shape across the proposed growth series. But they don't.

Although based on little concrete data, my analysis of known Krayt and related specimens suggests that they change continuously during ontogeny, although leg number may shift more suddenly (I predict this happens during their first metamorphosis at sexual maturity). Strong allometric scaling of neck and total length is evident- if the two lengths scaled as body mass0.33 they would be maintaining shape across the proposed growth series. But they don’t.

I return to the best-documented krayt dragon remains: those that even Terrans have seen in the Rebel propaganda film you call “Episode IV”. Dr. Freezers, even your fellow blog-invigilators at SV-POW! discussed it. Witness the large size and long neck of the typical Krayt; whether horns existed or not in that form from the film is uncertain, and I note that these could even be a sexually dimorphic feature, but this is beside the point. Remnants of the body and limbs were never found. But this specimen fits well with my idea that all krayts are one species, or two at most—and how many top predatory megafaunal species could coexist on a desolate arid planet like Tatooine anyway?

What still strikes me is the phenotypic variation in krayts: some large or small varieties have from two to four toes, and different scythe-like horns on their tail tips. This leads me to heap speculation atop my precarious pile of hypotheses: what if krayts are simply phenotypically labile, varying their traits almost stochastically between individuals due to relatively flexible ontogenetic programming, but still following strong overall trends as size increase, like those I have plotted above? Those stronger trends might be more tightly regulated by homeobox-like genes similar to those that have shaped so much of your Terran metazoan diversity, influencing features along the body axis like those I have mentioned (neck, limbs) across growth? I like this idea too much for it to be true, I admit. But if one krayt dragon existed just a short time ago, it is not simply fodder for the cryptoxenozoologists. And so, sooner or later, someone will answer my scientific salvo. I predict that burrows where the krayt dragons metamorphose between life stages, growing new legs and longer bodies, will be found in due time.

However, I have a stronger inference that I present to you as part of our common interest. On Terra and Tatooine alike, larger animals tend to adopt more straight-legged limb poses to improve their leverage, as I outlined with the dewbacks above. I plot existing data for Terran animals with my best estimates (for dewbacks and banthas, quite reliable; for krayts, my guesses) for this “effective mechanical advantage” below. What this shows is that dewbacks and Banthas both fall below the “normal” curve for Terran land mammals, as I explain:

In the case of dewbacks, this decrease of limb leverage seems offset by passive support from their pressurized scaly legs and enlarged whole-limb extensor muscles of their hindlegs, so they are overall about as well adapted to bursts of speed as large mammals from your world, such as buffalo or large antelope, even if their endurance suffers (a tradeoff, perhaps, for their reptile-like adaptations to desert life).

In the case of banthas, they do no better or worse than elephants; all are slow due to their size and “graviportal” focus of adaptations. Like elephants, but unlike dewbacks, banthas do not “invest” more body mass into supportive leg muscle, and so they are slower than they might otherwise be.

Effective mechanical advantage of the limbs, with Terran data for mammals (red+blue) (source 1 and source 2), and my new data for Tatooine megafauna. Past a moderate size, EMA either declines or remains constant. Once the limbs are fairly straight (near the size of a Terran horse), EMA cannot be much improved.

Effective mechanical advantage (EMA) of the limbs, with Terran data for mammals (red+blue) (source 1 and source 2), and my new data for Tatooine megafauna (green). Past a moderate size, EMA either declines or remains constant. Once the limbs are fairly straight (near the size of a Terran horse, or Tatooine eopie; vertical dashed line), EMA cannot be much improved.

But the krayts (young or smaller species aside) suffer more from their size than other Tatooine megafauna, as they do not increase their limbs’ mechanical advantage any more than the others do, and so they must become slower as they grow. This explains, however, why their ecology shifts from being a mobile predator when smaller (feeding on dewback, then bantha-sized prey) to being more of an ambush predator or specialist on slow/immobile prey like sarlaccs as they attain titanic sizes. Their limbs, despite becoming more numerous, must become less able to support them as size increases, as in other Terran and Tatooine megafauna, and thus they are destined to benefit from giant size (in many ways, including near-invulnerability and capacity to take the largest prey) at a cost of athleticism (but with prey like sarlaccs, who needs it?). In the greater, or fully mature, krayt dragons, I suggest that the limbs each become less supportive and more of a stabilizer to prevent their slug-like bulk from rolling over, or a set of “oars” to help them navigate through sandy environments like the Dune Seas. They support their weight not so much with limbs and levers, but with a larger, cuirass-like breastbone system, rings of muscles and fibrous tissue, and their whole elongate body.

The ultimate implications of my biomechanical research are summarized below—I am sure you will agree with my reasoning.

Maximal speed vs. body mass data from (black) Terran animals (source), and (green) Tatooine megafauna (plus non-native Kell dragons for comparison). As size increases past ~100 kg mass, speed inevitably declines.

Maximal speed vs. body mass data from (black) Terran animals (source), and (green) Tatooine megafauna (plus non-native Kell dragons for comparison). As size increases past ~100 kg mass (when EMA in the other graph above is already maximal), speed inevitably declines.

As for those that have said that Greater Krayt Dragons and such are thereby confined to a life as scavengers and nothing more, I would welcome them to explore the Jundland Wastes locales armoured by all the security that this foolish notion provides. I, for one, would enjoy viewing such a visit, but only remotely via a probe droid’s holo-feed.

One of your Terran artists (jeddbub on deviantart) produced a provocative imagining of a Greater Krayt Dragon facing a Jedi. I'd wager for the former.

One of your Terran artists (jeddibub on deviantart) produced a provocative imagining of a Greater Krayt Dragon facing a Jedi. I’d wager for the former.

I submit this report in honour of Empress Syrrhosyx and the Fourth Empire– may you find the contents enlightening and may her rule grace your benighted homeworld before you, too, have nothing left of your megafauna but stories of dragons.

I welcome your comments, and perhaps some of your lauded “freezerinos” would care to comment below—but they must behave themselves, lest I find cause to deposit them in carbonite for hyperspace shipping to a lonely suffering on a lonely planet!

I shall shortly return this “blog” to your control, when the mood strikes me. That is the deal for this correspondence. Pray I don’t alter it any further.

Enjoy your little blog carnival, Terrans…

Pangalactically,

- Dr. Zhonav Diphyryzas

Read Full Post »

This is the mammoth image I remember, from a 1971 book, with no artist credited. It's actually not as good as I remember, by modern standards at least.

This is the mammoth image I remember, from a 1971 book, with no artist credited. It’s actually not as good as I remember, by modern standards at least.

Mammoths and I go way back, not quite to the Ice Age but at least to the late 1970s with my family’s visits to the University of Wisconsin Geology Museum, and Milwaukee Public Museum, to name two prominent places that inspired me. And one of my favourite science books had a colourful mammoth painting on the cover (above), an image that has stayed with me as awesomely evocative.

Stomach-Churning Rating: 3/10. But there’s a butt below, but that’s too late for you now. And there’s poo and other scatological (attempts at) humour. Otherwise, bones and a baby mammothsicle.

Fast forward to the 2000’s and I’m studying mammoths, along with their other kin amongst the Proboscidea (elephants and relatives). I even bumped into a frozen mammoth in Sapporo, Japan, nine years ago–

Yep. That's what it looks like. Nope, not the front end. That orifice is not the mouth. This is the XXXXX mammoth.

Yep. That’s what it looks like. Nope, not the front end. That dark orifice is not the mouth. This is a mammoth that was found on Bolshoi Lyakhovsky island, in the east Siberian arctic (New Siberian Islands archipelago), in 2003. Just think of finding this and being all excited then realizing, “Jackpot! Wait… Oh man, I just found the ass. I’ve discovered a mammoth bunghole, dammit.” Still, it’s pretty damn amazing, as frozen Ice Age buttocks go. I’d love to find one. I would not be bummed.

found on Bolshoi Lyakhovskiy island in 2003

What I know now that I didn’t realize as a kid, is that a mammoth is an elephant in all but name. Mammoths are more closely related to Asian elephants than either is to African elephants, and all of these elephants are members of the group Elephantidae. If we saw a smallish Columbian mammoth, we’d probably mostly look upon it as similar to a slightly hairy Asian elephant (but a scientist would be able to spot the distinctive traits that each has). Only woolly mammoths adopted the uber-hirsute state that we tend to think of as a “mammoth” trait. Think about it: a big animal would benefit most from a thick hairy insulation in an extremely cold habitat, and Columbian mammoths ranged further south than Woolly ones. No mammoths were radically different from living elephants, unless you count the dwarf ones. But as a kid, like most people do, I saw them as something else: an exotic monster of the past, eerily unlike anything today, and bigger too. And mammoths have the added mystique of the extinct.

Now I see mammoths as neither exotic nor that far in the past. Giant ground sloths, now those are still alien and exotic to me. I don’t get them. I know elephants pretty well, and I can understand mammoths in their light and in light of mammoth fossils. Various mammoth species persisted as late as maybe 10,000 (for the Woolly and Columbian species; the latter seeming to vanish earlier) to <4000 (for isolated Siberian forms) years ago, into quasi-historic times. And only some mammoths got larger than African elephants (Loxodonta) do, such as Columbian mammoths (~10,000 kg or more maximal body mass; Loxodonta is closer to 7-10 tonnes at best).

Lately, coincidence has brought me new knowledge of – and even greater interest in – mammoths.

First, a fortunate last-minute visit to Waco, Texas’s “Mammoth Site” (see my Flickr photo tour here) two weeks ago during a short visit to give a talk in that fine central Texan city.

Second, the subject of today’s post: the Natural History Museum’s new special exhibit “Mammoths: Ice Age Giants“, which is open until 7 September. The exhibit was created by the Field Museum in Chicago, but the NHM has given it a special upgrade under the expert guidance of mammoth guru Prof. Adrian Lister of the NHM, who was very kind to give me a tour of the exhibit.

What follows is primarily a photo-blog post and review of the exhibit, but with some thoughts and facts and anecdotes woven through it. Dark setting, glass cases, caffeination, crowds, and mobile phone camera rather than nice SLR in hand means that the quality isn’t great in my images– but all the more reason to go see the exhibit yourself! All images can be clicked to em-mammoth them.

On entry, one views a mammoth skeleton with a timelapse video backdrop that shows how the landscape (somewhere in USA) has changed since ~10,000 BCE.

On entry, one views a mammoth skeleton with a timelapse video backdrop that shows how the landscape (somewhere in USA) has changed since ~10,000 BCE.

The first part of the exhibit does a nice job of introducing key species of Proboscidea (elephants and their closest extinct relatives), with a phylogeny and timescale to put them into context, starting with the earliest forms:

The first part of the exhibit does a nice job of introducing key species of Proboscidea: from early species like Moeritherium...

from species like the tapir-sized Moeritherium

Skull of Moeritherium, reconstructed. Not that different from an early sirenian (seacow) in some ways, and general shape.

Skull of Moeritherium, reconstructed. Not that different from an early sirenian (seacow) in some ways, and general shape, whereas still quite a long way from a modern elephant in form– but the hints of tusks and trunk are already there.

...To the early elephantiform Phiomia, here shown as a small animal but I'm told it actually got quite large. And continuing with giant terrestrial taxa...

…To the early elephantiform Phiomia, here shown as a smallish animal but I’m told it actually got quite large. And continuing with giant terrestrial taxa…

I was awed by this reconstruction of the giant early elephantiform relative Deinotherium, with the short, swollen trunk and downturned tusks-- so bizarre!

I was awed by this reconstruction of the huge early elephantiform-relative Deinotherium, with the short, swollen trunk and downturned tusks– so bizarre!

Looking down onto the roof of the mouth of a NHM specimen of Deinotherium.

Looking down onto the roof of the mouth of an NHM specimen of Deinotherium. Big, sharper-edged, almost rhino-like teeth; far from the single mega-molars of modern elephants.

The lower jaw (top) and fairly straight tusk (bottom) of the widespread, early elephantiform Gomphotherium.

The lower jaw (top) and fairly straight tusk (bottom) of the widespread, early elephantiform Gomphotherium.

The big "shovel-tusker" elephantiform Amebelodon. This was one of the earliest stem elephants I learned of as a kid; the odd tusks still give me a sense of wonder.

The big “shovel-tusked” elephantiform Amebelodon. This was one of the earliest stem elephants I learned of as a kid; the odd tusks still stir wonder in me.

Amebelodon lower jaw, sans shovel tusks.

Amebelodon lower jaw, sans shovel tusks. Extended chin looks like some sort of childrens’ fun-slide. To me, anyway.

Next, there are some fun interactive displays of elephant biomechanics!

How would a mammoth hold up its head? This lever demonstration shows how a nuchal ligament helps.

How would a mammoth hold up its head? This lever demonstration shows how a nuchal ligament helps. Tension on the nuchal ligament is a force that acts with a large lever (represented by the big neural spines on the vertebrae around the shoulders, forming the mammoths’ “hump” there), creating a large moment (i.e. torque; rotational force) that holds the head aloft.

I love this robotic elephant trunk demonstration. It captures some of the weirdness of having a muscular hydrostat attached to your lip.

I love this robotic elephant trunk demonstration. It captures some of the weirdness of having a muscular hydrostat attached to your lip and nostrils. Not so easy for a human to control!

But forget the myths about elephants having 40,000 to 150,000 muscles in their trunk. They have three muscle layers: a circumferential one, an oblique one and a longitudinal one. Like any muscles, especially ones this large, the layers each consist of many muscle fibres. That’s where the 40-150k myth comes from, but muscle fibres (cells) are at a more microscopic level than whole muscles (organs). Elephants do have excellent control of their trunks, but it’s not magical. It’s just different.

Then we come to the centrepiece of the exhibit, the ~42,000 year old Woolly mammoth (Mammuthus primigenius) baby “Lyuba“, which the NHM added to the original exhibit in this new version, as a star attraction — and a big win. Adrian Lister related to me how he’d never seen Lyuba in person before (access to it was tightly guarded for years). So when the NHM received the crate and held a press event to open it and reveal Lyuba, a journalist asked Adrian to act excited, to which he responded something like, “I don’t need to act! I’m very excited!” I would be, too! Full story on Lyuba’s arrival, by NHM site here. A key paper on Lyuba by Fisher et al. is here.

Studies of tooth growth in Lyuba reveal her gestation period (like living elephants, around 22 months), season of birth (early spring), and age at death (1 month), among other information.

Studies of tooth growth in Lyuba reveal her gestation period (like living elephants, ~22 months), season of birth (early spring), and age at death (~1 month), among other information.

Here we can see the right ear, which was gnawed off along with the tail by dogs of the reindeer herders that found and retrieved Lyuba. Regardless, there's loads of anatomy preserved! A hump of juvenile "brown fat" atop the head, very strange flanges on the trunk (also visible in 1 other frozen mammoth specimen, but here preserved very clearly!), and more visible postcranially...

Here we can see the right ear, which was gnawed off along with the tail by dogs of the reindeer herders that found and retrieved Lyuba in 2006. Regardless, there’s loads of anatomy preserved!

A hump of juvenile “brown fat” sits atop the head and neck of Lyuba. This probably was  metabolized during growth to warm the baby; brown fat is packed with mitochondria and thereby conducts what is called “non-shivering thermogenesis”. Furthermore, Lyuba has very strange flanges on the trunk (also visible in 1 other frozen mammoth specimen, but here preserved very clearly! What were they used for?). More details are visible postcranially…

The body was naturally “freeze-dried”, with the addition of later rounds of soaking in formalin and ethanol, leaving the body dessicated and stiff, permanently stuck in a lifelike pose as seen below:

Whole view from an exhibit panel (you cannot photograph the specimen but these are fair game!). Here we see hair on the right forearm and remnant of the ear, and the labia and nipples showing it is a female mammoth are also preserved. The head-hump is lost during growth, and the shoulder changes to change the Asian elephant-like convex curvature of the back into the characteristic humped-shoulder form of a mammoth. But ontogeny still reveals the evolutionary connection of Elephas and Mammuthus.

Whole view from an exhibit panel (you cannot photograph the specimen but these are fair game!). Here we see hair on the right forearm and remnant of the ear, and the labia and nipples showing it is a female mammoth are also preserved. The head-hump is lost during growth, and the shoulder changes to change the Asian elephant-like convex curvature of the back into the characteristic humped-shoulder form of a mammoth. But ontogeny still reveals the evolutionary connection of Elephas and Mammuthus.

Lyuba and scientists studying her, which also shows how rigid the carcass is.

Lyuba and scientists studying her, which also shows how rigid the carcass is; one can almost stand it up. Inside the digestive tract, researchers found chewed up plant material that was probably dung eaten by the baby to gain vital bacterial digestive flora, and Lyuba had plenty of body fat and ingested milk, indicating that she did not starve to death. Rather, vivianite in the respiratory tract indicates drowning as the cause of her demise. Perfusion of the body by these vivianites may have helped to preserve the body.

Answering an question the public may be wondering about: is the hype about cloning a mammoth very soon true? Nope. Well addressed, including what to me is the urgent question: would cloning a mammoth be ethical?

Answering a question the public may be wondering about: is the hype about cloning a mammoth very soon true? Nope. Well addressed, including what to me is the urgent question: would cloning a mammoth be ethical?

The fourth part of the exhibit takes on a largely North American focus to first illustrate what mammoths were like biologically, and second to wow the visitor with some huge beasts in full body, full scale glory, as we shall see!

Mammoth hair! These samples and recent molecular studies show that mammoths were not ginger-coloured as we long thought, but rather the ginger color comes as the dark grey-brown-black colour fades postmortem, as a preservational artefact. I didn't know that; cool.

Mammoth hair! These samples and recent molecular studies show that mammoths were not ginger-coloured as we long thought, but rather the ginger color comes as the dark grey-brown-black colour fades postmortem, as a preservational artefact (story here). I didn’t know that; cool.

Mammoth chow!

Mammoth chow! I liked this addition to the exhibit. This brought mammoth ecology closer to home for me.

Mammoth poop!

Mammoth poop!

After the biology explanations, let there be megafauna!

Mammoth skull! A nice one, too.

Mammoth skull! A nice one, too.

Top predators of Ice Age North America: Arctodus (short-faced bear) and Homotherium (sabre-toothed cat).

Top predators of Ice Age North America: Arctodus (short-faced bear– does the short face mean they were happy, unlike a long face? Sorry but they never are shown as very happy, unless it is the joy of whupass) and Homotherium (the other sabre-toothed cat; not the longer-toothed Smilodon).

Skulls of North American megafauna: left to right, top to bottom: horse, short-faced bear, giant sloth, then camel, sabretooth,  rabbit, direwolf (viva Ned Stark!), and pronghorn antelope.

Skulls of North American (mega)fauna: left to right, top to bottom: horse, short-faced bear, giant ground sloth, then camel, sabretooth cat, rabbit, direwolf (viva Ned Stark!), and pronghorn antelope.

Mastodon skeleton!

Mastodon (Mammut americanum) skeleton!

Mammoths seem to have been wiped out by a combination of climate change and habitat fragmentation, combined with what this item symbolizes: human hunting. This beautiful piece is the main part of an atlatl, or javelin-hurling lever. It would give Ice Age hunters the extra power they'd need to penetrate mammoth hide and cause mortal injuries.

Mammoths (and perhaps mastodons, etc.) seem to have been wiped out by a combination of climate change and habitat fragmentation, combined with what this item symbolizes: human hunting. This beautiful piece is the main part of an atlatl, or javelin-hurling lever. It would have given Ice Age hunters the extra power they’d need to penetrate mammoth hide and cause mortal injuries. It is also a great tie-in to my recent post on the British Museum’s odd-animals-in-art.

Finally, the exhibit surveys the kinds of mammoths that existed- there is a huge reconstruction of a Columbian mammoth near the mastodon (above), then smaller kinds and discussions of dwarfism, which is another strength of NHM mammoth research:

Woolly mammoth lower jaw (right) and its likely descendant, the pygmy mammoth of the Californian coastline, Mammuthus exilis.

Woolly mammoth lower jaw (right) and its likely descendant, the pygmy mammoth of the Californian coastline, Mammuthus exilis.

The world's smallest mammoth (left), molar tooth compared with that of its much larger ancestor Palaeoloxodon. The status of Mammuthus creticus as a dwarf mammoth from Crete was cemented by Victoria Herridge and colleagues, including Adrian Lister at the NHM.

The world’s smallest mammoth (left), molar tooth compared with that of its much larger ancestor Palaeoloxodon. The status of Mammuthus creticus as a dwarf mammoth from Crete was cemented by Victoria Herridge and colleagues, including Adrian Lister at the NHM.

Pygmy mammoth reconstruction. Shorter than me. I want one!

Pygmy mammoth reconstruction. Shorter than me. I want one!

In the end, from all that proboscidean diversity we were left with just 2 or 3 species (depending on your species concepts; it's probably worth calling the African forest elephant its own species, Loxodonta cyclotis). The exhibit closes with a consideration of their conservation and fate. Ironically, this elephant skull could not be mounted with its tusks on display, because that would be commercializing ivory usage-- even though the whole point of the exhibit's denouement is to explain why elephants need protection!

In the end, from all that glorious proboscidean diversity we were left with just 2 or 3 species of elephantids today (depending on your species concepts; it’s probably worth calling the African forest elephant its own species, Loxodonta cyclotis). The exhibit closes with a consideration of their conservation and fate. Ironically, this elephant skull could not be mounted with its tusks on display, because that would be commercializing ivory usage– even though the whole point of the exhibit’s denouement is to explain why elephants need protection!

Reactions to the exhibit: the photos tell the tale. It’s undeniably great, in terms of showing off the coolness of mammoths, other proboscideans and Ice Age beasties, to the general public. I felt like the factual content and learning potential was good. It didn’t feel at all like pandering to the lowest common denominator like some other exhibits I’ve seen (cough, Dino Jaws, cough). I loved the reconstructions, which were top quality in my opinion. I could have done with some more real skeletons, yet more realistically the exhibit hall was already large and full of cool stuff. But give me a break: Lyuba. This trumps everything. Going to see a real friggin’ frozen mammoth baby buries the needle of the awesomeness meter on the far right. That’s pretty much all I need to say. The spectacle was a spectacle.

This exhibit shows a lot of work, a lot of thought, and a personalized NHM touch that reflects the actual research (even very recent work!) that NHM staff like Prof. Lister are doing with collaborators around the globe. What more could we want, a herd of cloned mammoth babies frolicking around and tickling guests with their flanged trunks? Don’t hold your breath.

You’ve got just over 2 months to see the exhibit. Don’t come complaining on September 8 “BBBBBbbbut I didn’t know, I didn’t think it would be that cool! I just thought there’d be a guy in a Snuffleupagus suit signing autographs!” You have a duty as a Freezerino to go bask in the frozen glory of these Ice Age critters. There may be an exam at the end. :)

Is the exhibit kid-friendly? More or less. The text is more targeted at teenager-level or so, but the visual impact is powerful without it. I’d warn a sensitive child about the withered baby mammoth body before showing it to them, so they aren’t caught off guard and scarred by the experience. I saw plenty of kids in the exhibit and they all seemed happy. Parents may want to linger longer and absorb all the interesting information, whereas kids may blitz through or goof around, so plan accordingly if you’re inbound with sprogs.

You know what I was eyeing up in the gift shop...

You know what I was eyeing up in the gift shop…

Aside: The frozen mammoths get me wondering- what else does the Siberian (or extreme northern Canadian/Scandinavian) permafrost conceal? There are a lot of awesome Ice Age megafauna I’d cut my left XXXXX off to study quasi-intact… think about how amazing it would be to find a giant ground sloth (not bloody likely), sabretooth cat, or other species. There’s a lot of north up north. A lot of space and ice. A lot could happen. And climate change will make discoveries like this more likely, while the melting (and humanity) lasts…

Wool we ever find the Lyuba of woolly rhinos? It could happen.

Wool we ever find the Lyuba of woolly rhinos (Coelodonta)? Cast of a mummified woolly rhino from the NHM’s entry hall. More of these finds are likely, I’d say.

Read Full Post »

Welcome back to my two-part British Museum series; I covered crocodiles before. Here, I celebrate the less common creatures depicted in human art, design and culture. And we begin back in Egypt, with a bit of crocodile to provide a nice segue:

With the head and torso of a hippo, the legs of a lion and the tail of a crocodile, the Egyptian goddess Taweret just rocks. More info here- https://www.britishmuseum.org/explore/highlights/highlight_objects/aes/b/breccia_statue_of_taweret.aspx

With the head and torso of a hippo, the legs of a lion and the tail of a crocodile (not easily visible here), the Egyptian goddess Taweret just rocks. More info here.

Anatomy in art is best when the anatomy is actually used as a substrate for art, as in this later piece from Egypt, and another piece that follows it:

Scapula (shoulder blade) from an ox, from Roman Egypt. Click to embovine for closer examination and explantion.

Scapula (shoulder blade) from an ox, with Roman enscriptions. Click to embovine for closer examination and explanation.

~8000 BC red deer antler headdress from England (click to enstaggen for closer examination and text details).

~8000 BC red deer antler headdress from England (click to enstaggen for closer examination and text details in upper left). Picturing an Ice Age shaman wearing this gives me a sense of awe.

Human anatomy in our artwork, to my mind, reaches its pinnacle in Aztec religious masks like this, which was too cool to omit:

Use of a human skull to make a stunning mask decorated with obsidian, representing Tezcatlipoca, the Smoking Mirror and master of creation/destruction; slayer of Quetzalcoatl. Badass dial turned to 11!

Use of a human skull to make a stunning mask decorated with obsidian, representing Tezcatlipoca, the Smoking Mirror and master of creation/destruction; slayer of Quetzalcoatl. Badass dial turned to 11! He is also sometimes represented as a jaguar.

Continuing the mask theme, the following masks show off sawfish, sharks and other species from the region:

Awesome diversity of ceremonial fish masks from Africa.

Awesome diversity of ceremonial fish masks from Africa.

Lions find their way into plenty of artwork such as European royal heraldry. Yet the huge depictions of an Assyrian lion hunt in the British Museum are not only anatomically impressive but also evocative of a time long past, when Asian lions ranged far across human territories. In viewers today, however, they may inspire more sympathy for the fleeing lions than awe for the lordly charioteers, horsemen and archers that pursue them.

Assyrian lion hunt Royal Lion Hunt

I finish with some statues and other depictions of animals that are more globally uncommon than lions:

You don't see tapirs much in art but here seems to be one, as a bronze statuette from ~400s AD in China.

You don’t see tapirs much in art but here seems to be one, as a bronze statuette from ~400s AD in China.

Statue of the Indian elephant diety Ganesha from ~750 AD. As the placard explains, Ganesha got his elephant's head when Shiva freaked out and cut off the human one, then promised to make amends by substituting the head of the next animal he saw.

I love Indian artwork for its plethora of proboscideans. Here, a statue of the Indian elephant diety Ganesha from ~750 AD, engaged in a dance. As the placard explains, Ganesha got his elephant’s head when Shiva freaked out and cut off the human one, then promised to make amends by substituting the head of the next animal he saw.

North Chinese (~11-12th century) ceramic plate depicting a funky, vaguely humanoid dancing bear tied to a pole.

More dancing! North Chinese (~11-12th century) ceramic plate depicting a funky, vaguely humanoid dancing bear tied to a pole. The anatomical exaggerations here make the piece more memorable and vaguely demonic, but not so much as the next item.

The dance is over, thanks to ass demons. That’s right, ass demons. Many Burmese were surely frightened or inspired by these terracota warriors from 1400s AD. These warriors represented king Mara’s forces that attempted to disrupt the Buddha’s meditation. As ass demons would tend to do. (I hate it when that happens)

I hope you enjoyed this brisk dance through atypical animals and their anatomy in artwork! Coming next, a look at one of the greatest anatomists ever.

Read Full Post »

Short and sweet post here; it’s sunny outside and I want to be there BBQing!

I had a buried folder of CT files labelled as a species of fish, but on digging them out and segmenting them I realize it is not what I expected (inner fish or not!), as you will see.

Stomach-Churning Rating: 2/10; simple CT scan of a body.

Mystery Anatomy 2014same rules as before; remember that the scoreboard has been reset.

Identify the animal in the CT scout/pilot image below, as specifically as you can. But… (READ THE SENTENCE BELOW FIRST BEFORE ANSWERING!)

Today’s special rule: Summertime is coming and that means superhero films! Your answer must be in the form of a dialogue between a superhero(ine) and a supervillain(ess)! 

Difficulty: Even I am not 100% sure what this is but I have a decent idea. Not super hard, but not a super good segmentation.

Pow! Bam! Biff! Go forth and conquer! Then invite the Human Torch to your BBQ.

 

Read Full Post »

It’s World Penguin Day! Watch your back though… these penguins aren’t as nice as they seem. But they need us to be nice to them!

Hahaha?Whether you watch a classic GIF like the one above, or a kid-friendly TV/film documentary, you might get the impression that penguins lead carefree, or at least silly or slapstick, lives– happy feet and all that. It works for Hollywood: a Charlie Chaplin comedy relief role to play.  And that’s the vision of penguins I grew up with: they were living cartoons to me.

But what’s the reality? Plenty of documentaries, most notably to my mind the recent Attenborough’s “Frozen Earth” episodes or “March of the Penguins” film, have dealt with the darker side to these two-toned, tuxedo-toting antipodeans. And anyone who has experienced penguins in the wild has probably seen those not-so-light facets of penguinity firsthand. On realiizing just how compulsively horny young “hooligan cock” male penguins were, Natural History Museum ornithologist Douglas Russell wrote: ““just the frozen head of the penguin, with self-adhesive white O’s for eye rings, propped upright on wire with a large rock for a body, was sufficient stimulus for males to copulate and deposit sperm on the rock.”

Stomach-Churning Rating: 5/10; some tears may be shed over cute baby penguins and you might choke if you’re a rhea trying to swallow one, but the anatomy shown is mostly skeletal or dessicated. No penguin juices. Except those just mentioned above.

I’m quick to admit, I didn’t know much about penguins until recently. I couldn’t name many species or say much about their behaviour, anatomy or evolutionary history. When I was a graduate student at Berkeley, I was enthused by a now-classic, elegantly simple study (published in 2000) that fellow PhD student Tim Griffin and biomechanist Dr. Rodger Kram conducted on penguin waddling. They found that the waddling gait of penguins isn’t mechanically disadvantageous, as it appears, but rather is a way that they conserve energy while walking. It’s the short legs, instead, that make their gait metabolically expensive, because shorter legs mean that more frequent, costly steps need to be taken, incurring high costs due to rapid firing of leg muscles to support the body. My vicarious enjoyment of Griffin’s & Kram’s research began my scientific introduction to penguins. Fast forward to 2014: I get a crash course in penguinology.

Punta Tombo (4)

Mostly-fledged Magellanic penguin

That’s what this post is about, and how it brought me in touch with The Existentialist Penguin– the haggard, storm-tossed, predator-harried, starved and bullied wanderer of wastelands.

My personal introduction to penguins over the past year has been initiated by a collaboration with PhD student James Proffitt and long-time colleague Dr. Julia Clarke, both at the University of Texas in Austin. They kindly invited me to collaborate on applying modern biomechanics to the surprisingly excellent fossil record of penguins (Sphenisciformes), among other extant water birds. Before diving into it all, I happened to go to Argentina.

Punta Tombo (2)

Penguin tries to keep cool in the shade, opening its mouth to shed heat in the autumn sun.

Just before I travelled to Patagonia on unrelated business (to study sauropodomorph dinosaurs!), I did a little googling and came across Punta Tombo reserve, near the city of Trelew that I was visiting (more about that in a future post!). It’s where some 1+ million Magellanic penguins (Spheniscus magellanicus) gather every southern summer to breed and fledge before making a long ~5 month swim up to Brazil. I asked my host, Dr. Alejandro Otero, if we might take a day off to visit this spot, where guanacos, rheas and other wildlife were also said to be common, and he basically said “Hell yes!” as he’d never been there. My Flickr photostream gives a big set of my favourite photos from that trip, but here are some others below, to show some of my experiences. We rented a car and took a lovely 90-minute drive south across the Patagonian plains, observing wildlife like tinamous (yes! So exciting for me) as we went. You could get within 1.5m of the penguins according to park rules, and the penguins were very permissive of that!

This jaunty chap was staying put in his burrow while people walked by. We came closer and he kept rotating his head around, staring at us. I first took it as cute juvenile behaviour, but on later observations of penguins realized it was a threat- "My beak is sharp! Stay back, bro, or I'll glock ya!"

This jaunty chap was staying put in his burrow while people walked by. We came closer and he kept rotating his head around, staring at us. I first took it as cute juvenile behaviour, but on later observations of penguins realized it was a threat- “My beak is sharp! Stay back, bro, or I’ll glock ya!”

The video below shows a penguin encounter that left me with no doubts that these animals don’t mess around. The smaller penguin escaped, losing its cool burrow and some of its tough hide, too. Indeed, penguins can be remarkable assholes to each other.

With battles like this erupting all around us, where the penguins struggled to find shade in the desert-like inland parts of the park, often hundreds of meters away from the cool ocean, it came as no surprise to find casualties. The juveniles (and some remaining adults; most having left by now while the ~1 year-old juveniles fledge) not only battled, but also fasted, and roasted in the heat as they shed their insulatory fluff for waterproofed streamlining. This poor little flat Spheniscus had been trodden a bit past streamlined:Punta Tombo (3)

Near the end of our visit, just after I saw an informative sign about the lesser rhea or “choique” (Pterocnemia/Rhea pennata), we managed to get very close to a rhea and follow it for a while, as penguins stood around in apparent disinterest. I’ll never forget that meeting: two flightless birds, yet adapted to such different lifestyles and habitats. The penguins were in the rhea’s domain; a hot, wind-blown, scree-scoured scrubland on the edge of the fertile ocean.rhea-penguin

The choique soon found a dry old hatchling penguin carcass, no meatier than the surrounding thickets, and tried to swallow it. The loss of teeth by its distant ornithurine ancestors proved to be a bad move, because it struggled to get the jerky-like mass through its beak:

That Punta Tombo visit was an experience I’ll never forget. I returned to the UK, abuzz with excitement about penguins. I “got” them now, I felt, at least in a very unscientific, anthropomorphic way. It took the face-to-beak experience to drive that home, more than any emotive film treatment could. Whether enduring Antarctic wintery blasts or unforgivingly hot and dry, burrow-speckled coastal badlands, penguins are buggers with true grit. Survivors, as their >60 million year fossil record attests to. On my return, I delved through my photos of museum specimens to get a better appreciation for penguin anatomy, preparing to also get familiar with that fossil record; all as part of that ongoing work with Proffitt and Clarke. Here’s some of that anatomy:

My first encounter with a penguin in the wild is probably this specimen washed up on a beach in Uruguay. I'm going with the tentative ID of a juvenile penguin skeleton; probably Magellanic.

My first encounter with a penguin in the wild (but not a live one) is probably this specimen washed up on a beach in Uruguay. I’m going with the tentative ID of a juvenile penguin skeleton (short foot; flat wing bones); probably Magellanic. The bevy of vertebrate morphologists investigating dead penguins on this beach during our conference in 2010 will not soon be forgotten!

Magellanic penguin skeleton, "flying" through the Punta Tombo visitor centre.

Magellanic penguin skeleton, “flying” through the Punta Tombo visitor centre.

University Museum of Zoology Cambridge skeleton of one of the "great penguin" (do not confuse with the great pumpkin!) species; either King (patagonicus) or Emperor (forsteri).

University Museum of Zoology Cambridge skeleton of a “great penguin” (do not confuse with the great pumpkin!) species of Aptenodytes; either King (patagonicus) or Emperor (forsteri). Characteristic features, in addition to the robust, dense skeleton, include the short neck, flattened but robust wings and scapulae, robust furcula (wishbone), stubby legs (with a big blocky patella) and thin but longish tail (supposedly used to balance with while walking/standing).

I’ll visit some more penguin anatomy in coming images- those photos are just teasers. And they set the stage for me to go back to my one-stop-shopping for awesome ornithological specimens, the Natural History Museum at Tring (images below presented with kind permission from the Natural History Museum, London; but I took the photos), to pick up an assortment of 11 frozen penguins from helpful curator Hein van Grouw! Such as this “gagged” King penguin:
NHMUK penguin

And this handsome Emperor penguin, going through the Equine Imaging Centre’s CT scanner as I do my usual routine of (1) get cool critters, (2) barrage them with radiation to peek inside:penguin CT (3)

CT scanner monitors as I scan a penguin; mid-torso x-ray slice shown on the right.

CT scanner monitors as I scan a penguin; mid-torso x-ray slice shown on the right.

Awwwwww... baby Gentoo penguin (Pygoscelis papua). Unhappy feet, I'm afraid.

Awwwwww… baby Gentoo penguin (Pygoscelis papua— EDIT: Probably Aptenodytes; see comments below). Unhappy feet, I’m afraid… Happy CT scanning, however– specimens like this are NOT easy to come by in these northern nether regions!

Because I love the CT scan images of these penguins so much (their skeletons are awesome and bizarre!), I’ll share the pilot scans of the best ones now:

Calling all penguin experts! What's up with this? Is that really how much gastrolith volume a penguin carries, or did a museum curator stick rocks up its bum? Seems very caudal in position. I'm fascinated.

Calling all penguin experts! What’s up with this? Is that really how much gastrolith (stomach stone; near bottom of image) volume a penguin carries (answer after some literature reading: maybe yes!), or did a museum curator stick rocks up its bum? It seems very caudal in position, and this is consistent with other animals I’ve seen (some below). A paper on this phenomenon and potential role in ballast is here. Another here.

Side view.

Side view. Nice view of the head at least.

The fluffy baby shown in the photo above. Nice pose, and lots of anatomy shown. And check it out- gastroliths?!? In such a young animal-- is it even feeding yet?

Young juvenile. Nice pose, and lots of anatomy is shown. And check it out- gastroliths?!? In such a young animal– is it even feeding yet? (presumably straight after hatching) And they are relatively big pebbles, too! If I noticed this 5 years ago, it would have been a nice paper to report- first recognition of gastroliths in penguin chicks seems to have been then. Indeed, that study observed some chicks intentionally swallowing stones.

Another youngun.

Another youngun; the fluffy one from the photo above. More rocks up its wazoo.

Three wee little chicks.

Three wee little chicks, all with stomach stones.

CT reconstruction of adult skeleton. This specimen was gutted and flattened, so the gastroliths are few and scattered. Check out the long tail:

From recent skeletons to fossil ones, penguins have wacky anatomy; they break most of the “rules” of being a proper bird, putting other oddballs like rheas to shame. I can’t ably review the many penguin species we know of, but the ancient Palaeocene penguin Waimanu features prominently in recent scientific discussions of penguin evolution, such as the superb research and blog of Dan Ksepka  as well as many workers in the southern hemisphere. I haven’t had a chance to inspect that creature’s bones, but while in Trelew, Argentina, I was very pleased to run into some excellent specimens of a later animal:

Part of the rather nice skeleton of Palaeospheniscus patagonicus, an Oligocene/Miocene largish penguin; from the MFN collections in Trelew, Argentina and collected nearby.

Part of the nice skeleton of Palaeospheniscus patagonicus, an Oligocene/Miocene largish penguin; from the MEF collections in Trelew, Argentina and collected nearby. The genus has been known since Ameghino’s description in 1891, and is closely related to living penguins, especially Aptenodytes. It was not a large penguin, but at about 5kg body mass was no slouch as birds go (roughly similar in size to a Magellanic penguin). I also got to see  Madrynornis mirandus, a Miocene form.

For me, the diagnostic trait of a penguin skeleton: the very short, tobust tarsometatarsus. From Palaeospheniscus, as above.

For me, the diagnostic trait of a penguin skeleton: the very short, tobust tarsometatarsus. From Palaeospheniscus, as above. The great palaeontologist GG Simpson wrote of it: “Despite the innumerable variations in details, the tarsometatarsi, on which all species but P. robustus are based, are quite stereotyped in general structure and leave little doubt that the forms placed here by Ameghino do all belong to a natural group.” A ratio of length to proximal width of >2 is typical of most penguins.  Synapomorphy FTW!

From beach skeletons, to mass suffering of landbound birds, to 3D imaging and fossil skeletons, I’ve had quite the immersion in penguinness lately. And through that experience, I’ve been drawn closer to penguins in more ways than one. I’ve been impressed by their adaptability and durability. In some ways, penguins’ adaptations to harsh freezing winters in wastelands also aid them to survive harsh baking summers in dry badlands.

Yes, those badlands are still coastal, and penguins can still drink the saltwater and excrete salt via their supraorbital glands, but those penguins in Punta Tombo were not having a keg party. They were clearly enduring some serious discomfort, and not all making it through the ordeal. I watched silently along with other penguins as one penguin lay prone in an awkward pose on a bleached-white stretch of hardpan soil, while one flipper meekly raised, then flopped down. It was not long for this world, and there was a host of large scavengers around ready to make the most of that, while penguin-eating giant petrels (a sister group to penguins) wheeled overhead.

penguin-waddle

Waddlers of the wastes

While penguins still spend most of their lives at sea, they retain a sometimes astonishing array of behaviours they use on land: burrowing, hopping/jumping, costly short-legged (but efficiently waddling) walking, and perhaps more that we haven’t yet discovered! Their unique anatomy reflects a compromise between all these factors, and we’re fortunate to have knowledge of their fossil record that shows a lot of detail on how they evolved it all. While penguins are a highly aquatic species, they show how aquatic and terrestrial adaptations can coexist in harmony; it’s not just a black-or-white issue. But with climate change in progress, the ~18 species of penguins have some rapidly altering challenges to adapt to, or go the way of Waimanu. This is a critical Kierkegaardian moment for The Existentialist Penguin.

I raise a glass in toast to that versatile, resilient, gravel-gizzarded Existentialist Penguin! May it persevere all the troubles our ever-changing world throws at it, as it has done since the Palaeocene. And may we draw inspiration from its tenacity, to face our own troubles, together on this crazy spinning globe!

Cheers!

by animalloz, on deviantart

Read Full Post »

This post was just published yesterday in a shorter, edited form in The Conversation UK, with the addition of some of my latest thoughts and the application of the editor’s keen scalpel. Check that out, but check this out too if you really like the topic and want the raw original version! I’ve changed some images, just for fun. The text here is about 2/3 longer.

Recently, the anatomy of animals comes up a lot, at least implicitly, in science news stories or internet blogs. Anatomy, if you look for it, is everywhere in organismal and evolutionary biology. The study of anatomy has undergone a renaissance lately, in a dynamic phase energized by new technologies that enable new discoveries and spark renewed interest. It is the zombie science, risen from what some had assumed was its eternal grave!

Stomach-Churning Rating: 4/10; there’s a dead elephant but no gore.

My own team has re-discovered how elephants have a false “sixth toe” that has been a mystery since it was first mentioned in 1710, and we’ve illuminated how that odd bit of bone evolved in the elephant lineage. This “sixth toe” is a modified sesamoid kind of bone; a small, tendon-anchoring lever. Typical mammals just have a little nubbin of sesamoid bone around their ankles and wrists that is easily overlooked by anatomists, but evolution sometimes co-opts as raw material to turn into false fingers or toes. In several groups of mammals, these sesamoids lost their role as a tendon’s lever and gained a new function, more like that of a finger, by becoming drastically enlarged and elongated during evolution. Giant pandas use similar structures to grasp bamboo, and moles use them to dig. We’ve shown that elephants evolved these giant toe-like structures as they became larger and more terrestrial, starting to stand up on tip-toe, supported by “high-heels” made of fat. Those fatty heels benefit from a stiff, toe-like structure that helps control and support them, while the fatty pads spread out elephants’ ponderous weight.

Crocodile lung anatomy and air flow, by Emma Schachner.

Crocodile lung anatomy and air flow, by Emma Schachner.

I’ve also helped colleagues at the University of Utah (Drs. Emma Schachner and Colleen Farmer) reveal, to much astonishment, that crocodiles have remarkably “bird-like” lungs in which air flows in a one-way loop rather than tidally back and forth as in mammalian lungs. They originally discovered this by questioning what the real anatomy of crocodile lungs was like- was it just a simple sac-like structure, perhaps more like the fractal pattern in mammalian lungs, and how did it work? This question bears directly on how birds evolved their remarkable system of lungs and air sacs that in many ways move air around more effectively than mammalian lungs do. Crocodile lungs indicate that “avian” hallmarks of lung form and function, including one-way air flow, were already present in the distant ancestors of dinosaurs; these traits were thus inherited by birds and crocodiles. Those same colleagues have gone on to show that this feature also exists in monitor lizards, raising the question (almost unthinkable 10-20 years ago) of whether those bird-like lungs are actually a very ancient and common feature for land animals.

Speaking of monitor lizards, anatomy has revealed how they (and some other lizards) all have venom glands that make their bites even nastier, and these organs probably were inherited by snakes. For decades, scientists had thought that some monitor lizards, especially the huge Komodo dragons, drooled bacteria-laden saliva that killed their victims with septic shock. Detailed anatomical and molecular investigations showed instead that modified salivary glands produced highly effective venom, and in many species of lizards, not just the big Komodos. So the victims of numerous toothy lizard species die not only from vicious wounds, but also from worsened bleeding and other circulatory problems promoted by the venomous saliva. And furthermore, this would mean that venom did not evolve separately in the two known venomous lizards (Gila monster and beaded lizard) and snakes, but was inherited from their common ancestor and became more enhanced in those more venomous species—an inference that general lizard anatomy supports, but which came as a big surprise when revealed by Bryan Fry and colleagues in 2005.

There’s so much more. Anatomy has recently uncovered how lunge-feeding whales have a special sense organ in their chin that helps them detect how expansive their gape is, aiding them to engulf vast amounts of food. Scientists have discovered tiny gears in the legs of leafhoppers that help them make astounding and precise leaps. Who knew that crocodilians have tiny sense organs in the outer skin of their jaws (and other parts of their bodies) that help them detect vibrations in the water, probably aiding in communication and feeding? Science knows, thanks to anatomy.

Just two decades or so ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject; both among scientists and the general public. What happened? Why did anatomy “die” and what has resuscitated it?

 

TH Huxley, anatomist extraordinaire

TH Huxley, anatomist extraordinaire, caricatured in a lecture about “bones and stones, and such-like things” (source)

Anatomy’s Legacy

In the 16th through 19th centuries, the field of gross anatomy as applied to humans or other organisms was one of the premier sciences. Doctor-anatomist Jean Francois Fernel, who invented the word “physiology”, wrote in 1542 that (translation) “Anatomy is to physiology as geography is to history; it describes the theatre of events.” This theatric analogy justified the study of anatomy for many early scientists, some of whom also sought to understand it to bring them closer to understanding the nature of God. Anatomy gained impetus, even catapulting scientists like Thomas Henry Huxley (“Darwin’s bulldog”) into celebrity status, from the realisation that organisms had a common evolutionary history and thus their anatomy did too. Thus comparative anatomy became a central focus of evolutionary biology.

But then something happened to anatomical research that can be hard to put a finger on. Gradually, anatomy became a field that was scoffed at as outmoded, irrelevant, or just “solved”; nothing important being left to discover. As a graduate student in the 1990s, I remember encountering this attitude. This apparent eclipse of anatomy accelerated with the ascent of genetics, with anatomy reaching its nadir in the 1950s-1970s as techniques to study molecular and cellular biology (especially DNA) flourished.

One could argue that molecular and cellular biology are anatomy to some degree, especially for single-celled organisms and viruses. Yet today anatomy at the whole organ, organism or lineage level revels in a renaissance that deserves inspection and reflection on its own terms.

 

Anatomy’s Rise

Surely, we now know the anatomy of humans and some other species quite well, but even with these species scientists continue to learn new things and rediscover old aspects of anatomy that laid forgotten in classic studies. For example, last year Belgian scientists re-discovered the anterolateral ligament of the human knee, overlooked since 1879. They described it, and its importance for how our knees function, in novel detail, and a lot of media attention was drawn to this realisation that there are some things we still don’t understand about our own bodies.

A huge part of this resurgence of anatomical science is technology, especially imaging techniques- we are no longer simply limited to the dissecting knife and light microscope as tools, but armed with digital technology such as 3-D computer graphics, computed tomography (series of x-rays) and other imaging modalities. Do you have a spare particle accelerator? Well then you can do amazing synchrotron imaging studies of micro-anatomy, even in fairly large specimens. Last year, my co-worker Stephanie Pierce and colleagues (including myself) used this synchrotron approach to substantially rewrite our understanding of how the backbone evolved in early land animals (tetrapods). We found that the four individual bones that made up the vertebrae of Devonian tetrapods (such as the iconic Ichthyostega) had been misunderstood by the previous 100+ years of anatomical research. Parts that were thought to lie at the front of the vertebra actually lay at the rear, and vice versa. We also discovered that, hidden inside the ribcage of one gorgeous specimen of Ichthyostega, there was the first evidence of a sternum, or breastbone; a structure that would have been important for supporting the chest of the first land vertebrates when they ventured out of water.

Recently, anatomists have become very excited by the realization that a standard tissue staining solution, “Lugol’s” or potassium iodide iodine, can be used to reveal soft tissue details in CT scans. Prior to this recognition, CT scans were mainly used in anatomical research to study bone morphology, because the density contrast within calcified tissues and between them and soft tissues gives clearer images. To study soft tissue anatomy, you typically needed an MRI scanner, which is less commonly accessible, often slower and more expensive, and sometimes lower resolution than a CT scanner. But now we can turn our CT scanners into soft tissue scanners by soaking our specimens in this contrast solution, allowing highly detailed studies of muscles and bones, completely intact and in 3D. Colleagues at Bristol just published a gorgeous study of the head of a common buzzard, sharing 3D pdf files of the gross anatomy of this raptorial bird and promoting a new way to study and illustrate anatomy via digital dissections- you can view their beautiful results here. Or below (by Stephan Lautenschlager et al.)!

Buzzard-head

These examples show how anatomy has been transformed as a field because we now can peer inside the bodies of organisms in unprecedented detail, sharing and preserve those data in high-resolution digital formats. We can do this without the concern that a unique new species from Brazilian rainforests or exciting fossil discovery from the Cambrian period would be destroyed if we probed certain questions about its anatomy that are not visible from the outside– a perspective in which science had often remained trapped for centuries. These tools became rapidly more diverse and accessible from the 1990s onward, so as a young scientist I got to see some of the “before” and “after” influences on anatomical research—these have been very exciting times!

When I started my PhD in 1995, it was an amazing luxury to first get a digital camera to use to take photographs for research, and then a small laser scanner for making 3D digital models of fossils, with intermittent access to a CT scanner in 2001 and now full-time access to one since 2003. These stepwise improvements in technology have totally transformed the way I study anatomy. In the 1990s, you dissected a specimen and it was reduced to little scraps; at best you might have some decent two-dimensional photographs of the dissection and some beetle-cleaned bones as a museum specimen. Now, we CT or MRI scan specimens as routine practice, preserving many mega- or gigabytes of data on its internal and external, three-dimensional anatomy in lush detail, before scalpel ever touches skin. Computational power, too, has grown to the point where incredibly detailed 3D digital models produced from imaging real specimens can be manipulated with ease, so science can better address what anatomy means for animal physiology, behaviour, biomechanics and evolution. We’re at the point now where anatomical research seems no longer impeded by technology– the kinds of questions we can ask are more limited by access to good anatomical data (such as rare specimens) than by the ways we acquire and use those data.

My experience mirrors my colleagues’. Larry Witmer at Ohio University in the USA, past president of the International Society for Vertebrate Morphologists, has gone from dissecting bird heads in the 1990s to becoming a master of digital head anatomy, having collected 3D digital scans of hundreds of specimens, fossil and otherwise. His team has used these data to great success, for example revealing how dinosaurs’ fleshy nostrils were located in the front of their snouts (not high up on the skull, as some anatomists had speculated based on external bony anatomy alone). They have also contributed new, gorgeous data on the 3D anatomy of living animals such as opossums, ostriches, iguanas and us, freely available on their “Visible Interactive Animal” anatomy website. Witmer comments on the changes of anatomical techniques and practice: “For extinct animals like dinosaurs, these approaches are finally putting the exploration of the evolution of function and behavior on a sound scientific footing.

I write an anatomy-based blog called “What’s in John’s Freezer?” (haha, so meta!), in which I recount the studies of animal form and function that my research team and others conduct, often using valuable specimens stored in our lab’s many freezers. I started this blog almost two years ago because I noticed a keen interest, or even hunger for, stories about anatomy amongst the general public; and yet few blogs explicitly were about anatomy for its own sake. This interest became very clear to me when I was a consultant for the BAFTA award-winning documentary series “Inside Nature’s Giants” in 2009, and I was noticing more documentaries and other programmes presenting anatomy in explicit detail that would have been considered too risky 10 years earlier. So not only is anatomy a vigorous, rigorous science today, but people want to hear about it. Just in recent weeks, the UK has had “Dissected” as two 1-hour documentaries and “Secrets of Bones” as back-to-back six 30-minute episodes, all very explicitly about anatomy, and on PRIME TIME television! And PBS in the USA has had “Your Inner Fish,” chock full of anatomy. I. Love. This.

Before the scalpel: the elephant from Inside Nature's Giants

Before the scalpel: the elephant from Inside Nature’s Giants

There are many ways to hear about anatomy on the internet these days, reinforcing the notion that it enjoys strong public engagement. Anatomical illustrators play a vital role now much as they did in the dawn of anatomical sciences– conveying anatomy clearly requires good artistic sensibilities, so it is foolish to undervalue these skills. The internet age has made disseminating such imagery routine and high-resolution, but we can all be better about giving due credit (and payment) to artists who create the images that make our work so much more accessible. Social media groups on the internet have sprung up to celebrate new discoveries- watch the Facebook or Twitter feeds of “I F@*%$ing Love Science” or “The Featured Creature,” to name but two popular venues, and you’ll see a lot of fascinating comparative animal anatomy there, even if the word “anatomy” isn’t necessarily used. I’d be remiss not to cite Emily Graslie’s popular, unflinchingly fun social media-based explorations of gooey animal anatomy in “The Brain Scoop”. I’d like to celebrate that these three highly successful disseminators of (at least partly) anatomical outreach are all run by women—anatomical science can (and should!) defy the hackneyed stereotype that only boys like messy stuff like dissections. There are many more such examples. Anatomy is for everyone! It is easy to relate to, because we all live in fleshy anatomical bodies that rouse our curiosity from an early age, and everywhere in nature there are surprising parallels with — as well as bizarre differences from — our anatomical body-plans.

 

Anatomy’s Relevance

What good is anatomical knowledge? A great example comes from gecko toes, but I could pick many others. Millions of fine filaments, modified toe scales called setae, use micro-molecular forces called van der Waals interactions to help geckos cling to seemingly un-clingable surfaces like smooth glass. Gecko setae have been studied in such detail that we can now create their anatomy in sufficient detail to make revolutionary super-adhesives, such as the product “Geckskin”, 16 square inches of which can currently suspend 700 pounds aloft. This is perhaps the most famous example from recent applications of anatomy, but Robert Full’s Poly-Pedal laboratory at Berkeley, among many other research groups excelling at bio-inspired innovation in robotics and other fields of engineering and design, regularly spins off new ideas from the principle that “diversity enables discovery”, as applied to the sundry forms and functions found in organisms. By studying the humble cockroach, they have created new ways of building legged robots that can scour earthquake wreckage for survivors or explore faraway planets. By asking “how does a lizard use its big tail during leaping?” they have discovered principles that they then use to construct robots that can jump over or between obstacles. Much of this research relates to how anatomical traits determine the behaviours that a whole, living, dynamic organism is capable of performing.

Whereas when I was a graduate student, anatomists and molecular biologists butted heads more often than was healthy for either of them, competing for importance (and funding!), today the scene is changing. With the rise of “evo devo”, evolutionary developmental biology, and the ubiquity of genomic data as well as epigenetic perspectives, scientists want to explain “the phenotype”—what the genome helps to produce via seemingly endless developmental and genetic mechanisms. Phenotypes often are simply anatomy, and so anatomists now have new relevance, often collaborating with those skilled in molecular techniques or other methods such as computational biology. One example of a hot topic in this field is, “how do turtles build their shells and how did that shell evolve?” To resolve this still controversial issue, we need to know what a shell is made of, what features in fossils could have been precursors to a modern shell, how turtles are related to other living and extinct animals, how a living turtle makes its shell, and how the molecular signals involved are composed and used in animals that have or lack shells. The first three questions require a lot of anatomical data, and the others involve their fair share, too.

Questions like these draw scientists from disparate disciplines closer together, and thanks to that proximity we’re inching closer to an answer to this longstanding question in evolutionary biology and anatomy, illustrated above in the video.  As a consequence, the lines between anatomists and molecular/cellular biologists increasingly are becoming blurred, and that synthesis of people, techniques and perspectives seems to be a healthy (and inevitable?) trend for science. But there’s still a long way to go in finding a happy marriage between anatomists and the molecular/cellular biologists whose work eclipsed theirs in past decades. Old controversies like “should we use molecules or morphology to figure out how animals are related to each other?” are slowly dying out, as the answer becomes evident to be “Yes. Both.” (especially when fossils can be included!) Such dwindling controversies contribute to the healing of disciplinary rifts and the unruffling of parochial feathers.

Yet many anatomists would point to lingering obstacles that give them concern for their future; funding is but one of them (few would argue that gross anatomical research is as well off in provision of funding as genetics is, for example). There are clear mismatches between the hefty importance, vitality, popularity and rigour of anatomical science and its perception or its role in academia.

Romane 1892, covering Haeckel's classic, early evo-devo work (probably partly faked, but still hugely influential)

Romane 1892, covering Haeckel’s classic, early evo-devo work (probably partly faked, but still hugely influential) (source)

 

Anatomy’s Future

One worry the trend that anatomy as a scientific discipline is clearly flourishing in research while it dwindles in teaching. Fewer and fewer universities seem to be teaching the basics of comparative anatomy that were a mainstay of biology programmes a century ago. Yet anatomy is everywhere now in biology, and in the public eye. It inspires us with its beauty and wonder—when you marvel at the glory of beholding a newly discovered species, you are captivated by its phenotypic pulchritude. Anatomy is still the theatre in which function and physiology are enacted, and the physical encapsulation of the phenotype that evolution moulds through interactions with the environment. But there is cause for concern that biology students are not learning much about that theatre, or that medical schools increasingly seem to eschew hands-on anatomical dissection in favour of digital learning. Would you want a doctor to treat you if they mainly knew human anatomy from a CGI version on an LCD screen in medical school, and hence were less aware of all the complexity and variation that a real body can house?

Anatomy has an identity problem, too, stemming from decades of (Western?) cultural attitudes (e.g. the “dead science” meme) and from its own success—by being so integral to so many aspects of biology, anatomy seems to have integrated itself toward academic oblivion, feeding the perception of its own obsolescence.  I myself struggled with what label to apply to myself as an early career researcher- I was afraid that calling myself an “anatomist” would render me quaint or unambitious in the eyes of faculty job interview panels, and I know that many of my peers felt the same. I resolved that inner crisis years ago and came to love identifying myself at least partly as an anatomist. I settled on the label “evolutionary biomechanist” as the best term for my speciality. In order to reconstruct evolution or how animals work (biomechanics), we first often need to describe key aspects of anatomy, and we still discover new, awesome things about anatomy in the process. I still openly cheer on anatomy as a discipline because its importance is so fundamental to what I do, and I am far from alone in that attitude. Other colleagues that do anatomical research use other labels for themselves like “biomechanist”, “physiologist,” or “palaeontologist”, because those words better capture the wide range of research and teaching that they do, but I bet also because some of them likely still fear the perceived stigma of the word “anatomy” among judgemental scientists, or even the public. At the same time, many of us get hired at medical, veterinary or biology schools/departments because we can teach anatomy-based courses, so there is still hope.

Few would now agree with Honoré de Balzac’s 19th century opinion that “No man should marry until he has studied anatomy and dissected at least one woman”, but we should hearken back to what classical scientists knew well: it is to the benefit of science, humanity and the world to treasure the anatomy that is all around us. We inherit that treasure through teaching; to abscond this duty is to abandon this trove. With millions of species around today and countless more in the past, there should always be a wealth of anatomy for everyone to learn from, teach about, and rejoice.

X-ray technology has revolutionized anatomical studies; what's next? Ponder that as this ostrich wing x-ray waves goodbye.

X-ray technology has revolutionized anatomical studies; what’s next? Ponder that as this ostrich wing x-ray waves goodbye.

Like this post? You might also find my Slideshare talk on the popularity of anatomy interesting- see my old post here for info!

Read Full Post »

I’ve described our “Walking the Cat Back” Leverhulme Trust-funded project with Dr. Anjali Goswami and colleagues before, but today we really got stuck into it. We’re dissecting a 46kg male Snow Leopard (Panthera uncia) as the first “data point” (actually several hundred data points, but anyway, first individual) in our study of how limb and back muscles change with size in felids. No April Fools’ pranks here; real science-as-it-happens.

Stomach-Churning Rating: 7/10 for skinned leopard and globs of fat. Much worse in person, hence the downgrading from what could be a higher score. Don’t click the photos to emkitten them if you don’t want to see the details.

This leopard is the same one that Veterinary Forensics blogged about. It died in a UK cat conservation/recovery centre. Today is simply a short post, but it is the first in what will surely be a continued series of posts on felid postcranial anatomy and musculoskeletal biomechanics by our felid research team, with bits of natural history and evolution thrown in when we can manage. As befits one of my curt “Anatomy Vignette” posts, pictures will tell the story.

Skinned and mostly de-fatted snow leopard, with fat piled up on the lower left hand corner near the hind feet. Here we are identifying and then removing and measuring the individual muscles. Project postdoc Andrew Cuff is hard at work on the forelimb while I'm mucking around with the hindlimb.

Skinned and mostly de-fatted snow leopard, with fat piled up on the lower left hand corner near the hind feet. Here we are identifying and then removing and measuring the individual muscles. Project postdoc Andrew Cuff is hard at work on the forelimb while I’m mucking around with the hindlimb. The fat here is about 3kg subcutaneous fat, so around 6.5% of body mass. And as the cat has been around for a while, that fat has gone a bit rancid and that is not nice. Not nice at all, no… Usually smells do not bother me, but this took some adjustment. Fortunately, the muscles are still OK, and work is coming along well.

UCL PhD student Marcela Randau,, carving up our cat's limb muscles. As usual in comparative biomechanics, we measure the "architecture"- parameters of the muscle that relate in a somewhat straightforward fashion to function.

UCL PhD student Marcela Randau, carving up our cat’s limb muscles. As usual in comparative biomechanics, we measure the “architecture”- parameters of the muscle that relate in a somewhat straightforward fashion to function. This muscular architecture includes things like muscle mass, the lengths of the fibers (fascicles) that make up the muscles, and the angle of the fascicles to the muscle’s line of action. These parameters correlate reasonably well with the force and power that the muscle can develop, and its working range of length change. Other posts here have discussed this more, but by measuring the architecture of many muscles in many felids of different sizes, we can determine how felids large and small adapt their anatomy to support their bodies and move their limbs. This will help to solve some lingering mysteries about the odd ways that cats move and how their movement changes with body size.

This research is being driven forward mainly by Andrew and Marcela, shown above, so I wanted to introduce them and our odoriferous fat cat. Upcoming dissections: 1-2 more snow leopards, tiger, various lions, ocelot, black-footed cat, leopard, and a bunch of moggies, and whatever else comes our way. All were EU zoo/park mortalities (there are a LOT of big cats out there!).

EDIT: Had to add a photo of the CLAWS! Whoa dude.

CLAWS

Read Full Post »

Hey I almost forgot, it’s the blog’s second anniversary! What the hell happened this year?

Stomach-Churning Rating: there’s an 8/10 photo of ostrich guts here; otherwise 2/10ish.

I bring you tidings from the past and future!

I bring you tidings from the past and future!

This was the Year of the Rant, and I enjoyed ranting to you on this blog. Sometimes you ranted with me, and that was even better. It kicked off with that cat documentary that spurned me in a feline dismissive fashion, then I lit off on documentaries in general and how they should give more back to scientists (what a discussion in the comments!!!!). Ooooh that felt good. And helped me sort out my thoughts about the topic. And after then, I got paid more often and still did a lot of documentaries– if you haven’t been watching Secrets of Bones on BBC4, you should be weeping bitter, bitter dregs (and be scrambling to get access). Catch me tomorrow (Tues) night with some of our emus! They paid me reasonably and in return I worked hard for them; before, during, and after filming, and I think we all felt good about it. Or I did anyway. The show is excellent, so I feel even better!

Sneak peek from BBC4's Secrets of Bones episode 3... recognize anyone?

Sneak peek from BBC4’s Secrets of Bones episode 3… recognize anyone? (from their website)

But no ranting palaeo-related blog would be complete without a good T. rex rant, and I did that this year. Took a big dump on the scavenger-predator non-troversy. That went over so well, Slate picked it up- I never had expected that to happen! I also appreciated how many colleagues joined in to condemn the senseless perpetuation of this dead issue by the media and a few scientists.

There were also some posts on more introspective things, like the feeling of being lost that pervades both visiting a strange foreign city and doing science. And like how science needs both the qualities of a Mr Spock and a Captain Kirk. Those were fun experiments in combining  a personal, internal experience with a broader message.

Darwin greets Chinese visitor Microraptor in my office.

Darwin greets Chinese visitor Microraptor in my office.

When I asked for suggestions last year, you wanted more coverage of other people’s stuff, and so I did that to a degree, reviewing the All Yesterdays and Unfeathered Bird books. And then I fell off that wagon, which I may come back to. But along the way I realized I don’t enjoy writing about papers that other people have already published because, generally, I then lack the personal experience of doing the science and showing it in progress, which is what this blog tends to be about and what excites me on a personal, visceral level. Once the paper is out, I feel like the cat is out of the bag and it’s not as fun to talk about unless it’s totally mind-blowingly (A) cool or (B) idiotic. Anyway, I might do a solicited post if someone gets me excited about a paper before it comes out, or who knows, I may change my mind.

Entirely unfeathered Indian peafowl in matching views.

Entirely unfeathered Indian peafowl in matching views, with Unfeathered Bird’s author-illustrator.

I also posted on a fabulous blog that more people need to hit, because you may be surprised just how fascinating it is- Veterinary Forensics. I get the feeling often, both on my blog and from scientific colleagues, that veterinary anatomy/pathology issues are seen as “lesser science” than basic, even descriptive anatomy. Somehow, insanely weird diseases or pathologies don’t excite people as much as insanely weird “normal” anatomies. I know there are exceptions to that generalization, but I think it’s a common (mis)perception people have, and part of it is likely because those fields (veterinary medicine and zoology, for example) are historically separate, and people tend to see anatomy and pathology as separate things- as opposed to points along a continuum. Since coming to the RVC, I have come from that kind of a misperception to one in which pathology enormously enriches my understanding of form, function and evolution. I also love the “applications of basic science to helping animals live better lives” angle. We should all be trying to do that as scientists, but from time to time I notice that it isn’t taken seriously (I even get reviewers’ comments bluntly stating that it’s none of our business as basic scientists, or for anatomy/experimental biology journals to mention!). Whoops better stop there or I’ll be writing a new ranty post!

Can't get enough of this -xray GIF, so here it is again.

Can’t get enough of this x-ray GIF, so here it is again.

Darwin Day got into some of the vet-y issues regarding feet, in a post on hooves and then another on pigs’ feet.

Toward the end of the year I got some guest posts going, by two main people from my team: Sophie Regnault on rhino feet, and Julia Molnar on crocodile spines. I liked those posts a lot, and so did you, it seems, so there will be more of those coming in year 3. Quite a few are planned already.

One of my favourite papers I’ve ever done came out this year, by Vivian Allen et al. on dinosaur body shape/postural evolution, and that went nicely as a blog post with tons of extra context and stuff. Digital 3D dinos, what’s not to love?

I was on sabbatical for much of the year, so I was posting a lot about patellae (kneecaps) and how fun they are to study, which led to posts about basal bird skeletons and more, like Darwin’s chickens and a joke about cake that only I seemed to find funny, and ending with a grand summary of avian kneecaps. I also reported on some new (post-sabbatical) research, still ongoing, with Dr. Stephanie Pierce and Dr. Maedeh Borhani at the RVC, on how salamanders walk. During Freezermas, I plugged our new comparative cat project.

The mesenteries are so gorgeous!!!!!!

The mesenteries are so gorgeous!!!!!!

Speaking of Freezermas: It happened, it was terrifying, and we’ve all grown from the experience of surviving it. I had a blast dissecting that ostrich, and the x-ray pics were a hit with everyone, too!

Then there was random “freezer love” and assorted posts to give insight into the daily life of a freezer manager, such as doing an inventory and reflections on childhood. I snuck in a tour of Dublin museums and the amazing Crocodiles of the World near Oxford. I meant to do more of those “anatomy road trip posts” and still aim to.

And we ended the year by ending the ongoing drama of the Mystery Anatomy competition, starting off a new year with a new scoreboard. We got more poetic and lyrical in 2013 with the answers to those mysteries, and that will continue (groans from those who are poetically challenged).

Elephant skull mystery x-ray

Elephant skull mystery x-ray

Some brief numbers: view-wise the blog has been pretty close to last year; about 87,000 views in the past 12 months for a total of almost 200,000, wow! This year, Twitter just barely edged out Facebook for bringing people to the blog (3,134 vs 3,022 clicks) but then geenstijl.nl bizarrely brought 2,732! There was no big Reddit or other social media site moment this year, but various sites and links continued to bring in a steady flow of visitors to add to the Google-search-firehose’s. Thanks to folks who linked here!!!

What google searches brought people here the most often? The top 3 are the most interesting; the fifth one just makes me laugh because I’ve never discussed Deepstaria enigmatica anatomy here, but will continue to promote people finding the site by searching for it, if only to annoy cnidariologists:

rhino 83
giraffe 76
camel anatomy 62
what’s in john’s freezer 60
deepstaria enigmatica 56

I’m a little surprised “elephant” and “dinosaur” don’t bring as many searches here, but there are probably more sites about those animals and hence I get fewer of the hits. Looking forward to more hits on “ostrich anatomy”…

My two top rants were the top posts this year, and that’s no surprise given the comments and other attention they got. Thanks for helping by participating! Those were nice group-rants. Healthy and vigorous. Shockingly, a poetry round of mystery anatomy came in 3rd! People just liked the chickens + bones + poetry. Those, and some hits from year 1, broke the 1000-views marks.

Americans came here in a 3:1 ratio to Brits, which means that Brits punched above their weight per capita (~5:1 ratio)! Canadians, you tried, too. Here, have some back bacon of dubious provenance. :) Saint Kitts and Nevis with 670 views, wow! Very unexpected- you beat Italy and many others!

Most importantly, the blog has been about sharing my passion for anatomy (as preserved via freezers). I shared a conference talk about this subject here, using the blog as a prime example, to a warm reception. I want to try experimenting in new ways to use the blog to share things this year. I think you will like what I (we!) have lined up. Thanks for showing up and staying with me!

Read Full Post »

I Can’t Remember Freezermas…
Can’t Tell Dissection from a CT.
Deep down Inside I Feel to Freeze.
These Wonderful Scenes of Anatomy!
Now That the Week Is Through with Me,
I’m Waking up; Ratites I see
And There’s Not Much Left of These:
Nothing remains but bones now

(digested from Metallica’s “One“, in …And Justice For All, the pummeling, slickly produced, huge-sounding, Jason Newsted-bass-playing leviathan of a thematic album (1988). It was all downhill for Metallica after this one, but it was a good year for rock! The song is about a soldier who had traumatic injuries and was left paralyzed, “locked-in” to his own mind. Themes/footage from “Johnny Got His Gun” (1939 book/1971 movie) are interspersed. Did you see this track coming? If so, you’re just as demented as I am; congrats!)

And so another year ends; we’re at the final post of Freezermas 2014: The Concept Album. We had 7 tracks involving leitmotifs of ostriches and cats and 2 vs. 4 legs, and CTs and x-rays, and epic dissections, and disturbing pathologies, and some twisted lyrics that mangled classic albums. There are so many more concept albums I could have touched on- great ones by Rush, Yes, Savatage, Helstar, Mastodon… many more. But I’ll give you a chance to sit in the DJ’s seat in this post!

Stomach-Churning Rating: 6/10. Some internal organs.

Today’s one mystery dissection photo is of two things, and the Mystery Anatomy challenge is to identify both (the 2-part brown thing and the 1-part whitish thing). They are from our friend the ostrich.

Your task is to weave your answer into the lyrics of a song from any concept album (2 lines or more)- you must identify the song, artist and album with your answer so we can figure out the tune. Any genre is OK as long as it is clearly a concept album (music, that is). You have freedom. Use it wisely! As always, bonus points for extra cleverness.

Whazzat?

We’ll let Maytagtallica sing us out:

♫Hold my breath as I wait for points
Oh Please John, blog more?♫

no

Read Full Post »

And I post my blog and stare
Into x-rays of an ostrich
I’ve always known that radiographs never lie
People always say “that’s cool”
To see x-rays of an ostrich
So keen to know what
Lies behind the skin

(evolved from “Eyes of A Stranger” by Queensrÿche, from the epic masterpiece of Operation: Mindcrime (1988). One of my favourite albums of all time, and a fantastic concept album too. The band was operating at their peak. Tight! Drug addict Nikki gets brainwashed by the evil Dr. X and made to assassinate a nun, Sister Mary, who was a prostitute, and then there’s like a revolution or something, and things get all screwed up and no one ends up happy – or alive. All the while, Geoff Tate is singing his guts out. Anyway, I got to see them play the whole album live in 1990 in Madison, WI, for the filming of Operation: Livecrime, which was like a Mecca moment for me back then. Look for me (pre-bald years) in about the 6th row. )

What does that album have to do with the number 2 (two days left in Freezermas)? Hmm… Track 2 is the instrumental Anarchy-X, and today’s post is about X-rays as well as that funky ostrich (2 legs good! 2 toes good, too!) again, so I’m satisfied, and by this point you’re probably just oggling the mind-blowing images below anyway, so fuck it!

Stomach-Churning Rating: 2/10; just X-rays.

Tech/MRes Kyle Chadwick, Renate Weller and the equine imaging team at the RVC took these x-rays of our birdie for us and for an artist who is doing a big x-ray animal art show (more news on this soon!)– thanks to all of them for some truly awesome images! I could stare at the intricate details in these images for hours– go ahead, do it. Click to emostrichinate them (this post needs to be viewed on nice big screen), and oggle away…

Head and neck.

Head and neck.

Another view of the same.

Another view of the same. The highly flexible esophagus and trachea can be seen going diagonally across the neck; twisting from ventral to dorsal. It’s floppy, so it can do that.

Neck near the head; tapering.

Neck near the head; tapering.

Middle of neck. Check out the rings of the trachea!

Middle of neck. Check out the rings of the trachea!

Base of neck and shoulder

Base of neck and shoulder.

Shoulder and chest. Hard to image; thick and dense (still was frozen).

Shoulder and chest. Hard to image; thick and dense (still was frozen), hence the whiteout toward the left side of the image.

Check out that wing!!

Check out that wing!!

Ankle- note the big calloused pad that ostriches rest on (right side of image).

Ankle- note the big calloused pad that ostriches rest on (right side of image).

That two-toed foot... but did you know that normally the missing 2nd toe is still there as a fibrous remnant on the 3rd toe?

That two-toed foot… but did you know that normally the missing 2nd toe is still there as a fibrous remnant on the 3rd toe?

Tomorrow: the final day of Freezermas. What will it be?

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 210 other followers