Feeds:
Posts
Comments

I hinted at another post in last round, and here I deliver. (The “amazeballs” in the title is a running joke with our Xmas guests here in England, but it applies to the subject of these images, too… which will be the subject of a future blog post involving a dissection of the subject!)

This will end the 2014 round of Mystery Anatomy. What 2015 will bring, I am not sure, but here we have 15 images for my 15th mystery CT post and 2015 around the corner.

I do have a new, fun regular anatomy post idea planned for 2015 but I’ll explain that later.

Stomach-Churning Rating: 2/10; digital images; the cadaver is gutted but I am chuffed.

Mystery Anatomy 2014same rules as before.

Identify (1) the animal shown in the 15 slices, to species level (max. 5 pts), and then the major features (anatomical regions) evident in as many of the 15 slices as you can; details help (max. 5 pts for thoroughness and accuracy). 

Difficulty: No scale, sort of. Otherwise, pretty easy.

Answers will come on New Year’s Day, to ease your hangovers (or encourage vomiting).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

MysteryCT15(15)

15

Onward!

Deck the ‘Nets With PeerJ Papers— please sing along!

♬Deck the ‘nets with PeerJ papers,
Fa la la la la, la la la la.
‘Tis the day to show our labours,
Fa la la la la, la la la la.

Downloads free; CC-BY license,
Fa la la, la la la, la la la.
Read the extant ratite science,
Fa la la la la, la la la la.

See the emu legs before you
Fa la la la la, la la la la.
Muscles allometric’ly grew.
Fa la la la la, la la la la.

Follow the evolvin’ kneecaps
Fa la la la la, la la la la.
While we dish out ratite recaps 
Fa la la la la, la la la la.

Soon ostrich patellar printing
Fa la la la la, la la la la.
Hail anat’my, don’t be squinting
Fa la la la la, la la la la.

Dissections done all together
Fa la la la la, la la la la.
Heedless of the flying feathers,
Fa la la la la, la la la la♪

(alternate rockin’ instrumental version)

Stomach-Churning Rating: 5/10: cheesy songs vs. fatty chunks of tissue; there are no better Crimbo treats!

Today is a special day for palaeognath publications, principally pertaining to the plethora of published PeerJ papers (well, three of them anyway) released today, featuring my team’s research! An early Crimbo comes this year in the form of three related studies of hind limb anatomy, development, evolution and biomechanics in those flightless feathered freaks of evolutionary whimsy, the ratites! And since the papers are all published online in PeerJ (gold open access), they are free for anyone with internet access to download and use with due credit. These papers include some stunning images of morphology and histology, evolutionary diagrams, and a special treat to be revealed below. Here I’ll summarize the papers we have written together (with thanks to Leverhulme Trust funding!):

1) Lamas, L., Main, R.P., Hutchinson, J.R. 2014. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae). PeerJ 2:e716 http://dx.doi.org/10.7717/peerj.716 

My final year PhD student and “emu whisperer” Luis Lamas has published his first paper with co-supervisor Russ Main and I. Our paper beautifully illustrates the gross anatomy of the leg muscles of emus, and then uses exhaustive measurements (about 6524 of them, all done manually!) of muscle architecture (masses, lengths, etc.) to show how each of the 34 muscles and their tendons grew across a more than tenfold range of body mass (from 6 weeks to 18 months of age). We learned that these muscles get relatively, not just absolutely, larger as emus grow, and their force-generating ability increases almost as strongly, whereas their tendons tend to grow less quickly. As a result, baby emus have only about 22% of their body mass as leg muscles, vs. about 30% in adults. However, baby emus still are extremely athletic, more so than adults and perhaps even “overbuilt” in some ways.

This pattern of rapidly growing, enlarged leg muscles seems to be a general, ancestral pattern for living bird species, reflecting the precocial (more independent, less nest-bound), cursorial (long-legged, running-adapted) natural history and anatomy, considering other studies of ostriches, rheas, chickens and other species close to the root of the avian family tree. But because emus, like other ratites, invest more of their body mass into leg muscles, they can carry out this precocial growth strategy to a greater extreme than flying birds, trading flight prowess away for enhanced running ability. This paper adds another important dataset to the oft-neglected area of “ontogenetic scaling” of the musculoskeletal system, or how the locomotor apparatus adapts to size-/age-related functional/developmental demands as it grows. Luis did a huge amount of work for this paper, leading arduous dissections and analysis of a complex dataset.

Superficial layer of leg muscles in an emu, in right side view.

Superficial layer of leg muscles in an emu, in right side view. Click any image here to emu-biggen. The ILPO and IC are like human rectus femoris (“quads”); ILFB like our biceps femoris (“hams”); FL, GM and GL much like our fibularis longus and gastrocnemius (calf) muscles, but much much bigger! Or, perhaps FL stands for fa la la la la?

Data for an extra set of emus studied by coauthor Russ Main in the USA, which grew their muscles similarly to our UK group. The exponents (y-axis) show how much more strongly the muscles grown than isometry (maintaining the same relative size), which is the dotted line at 1.0.

Data for an extra set of emus studied by coauthor Russ Main in the USA, which grew their muscles similarly to our UK group. The exponents (y-axis) show how much more strongly the muscles grew than isometry (maintaining the same relative size), which is the dotted line at 1. The numbers above each data point are the # of individuals measured. Muscle names are partly above; the rest are in the paper. If you want to know them, we might have been separated at birth!

2) Regnault, S., Pitsillides, A.A., Hutchinson, J.R. 2014. Structure, ontogeny and evolution of the patellar tendon in emus (Dromaius novaehollandiae) and other palaeognath birds. PeerJ 2:e711 http://dx.doi.org/10.7717/peerj.711

My second year PhD student Sophie Regnault (guest-blogger here before with her rhino feet post) has released her first PhD paper, on the evolution of kneecaps (patellae) in birds, with a focus on the strangeness of the region that should contain the patella in emus. This is a great new collaboration combining her expertise in all aspects of the research with coauthor Prof. Andy Pitsillides‘s on tissue histology and mine on evolution and morphology. This work stems from my own research fellowship on the evolution of the patella in birds, but Sophie has taken it in a bold new direction. First, we realized that emus don’t have a patella– they just keep that region of the knee extensor (~human quadriceps muscle) tendon as a fatty, fibrous tissue throughout growth, showing no signs of forming a bony patella like other birds do. This still blows my mind! Why they do this, we can only speculate meekly about so far. Then, we surveyed other ratites and related birds to see just how unusual the condition in emus was. We discovered, by mapping the form of the patella across an avian family tree, that this fatty tendon seems to be a thing that some ratites (emus, cassowaries and probably the extinct giant moas) do, whereas ostriches go the opposite direction and develop a giant double-boned kneecap in each knee (see below), whereas some other relatives like tinamous and kiwis develop a more “normal”, simple flake-like bit of bone, which is likely the state that the most recent common ancestor of all living birds had.

There’s a lot in this paper for anatomists, biomechanists, palaeontologists, ornithologists, evo-devo folks and more… plenty of food for thought. The paper hearkens back to my 2002 study of the evolution of leg tendons in tetrapods on the lineage that led to birds. In that study I sort of punted on the question of how a patella evolved in birds, because I didn’t quite understand that wonderful little sesamoid bone. And now, 12 years later, we do understand it, at least within the deepest branches of living birds. What happened further up the tree, in later branches, remains a big open subject. It’s clear there were some remarkable changes, such as enormous patellae in diving birds (which the Cretaceous Hesperornis did to an extreme) or losses in other birds (e.g., by some accounts, puffins… I am skeptical)– but curiously, patellae that are not lost in some other birds that you might expect (e.g., the very non-leggy hummingbirds).

Fatty knee extensor tendon of emus, lacking a patella. The fatty tissue is split into superficial (Sup) and deep regions, with a pad corresponding to the fat pad in other birds continuous with it and the knee joint meniscus (cushioning pad). The triceps femoris (knee extensor) muscle group inserts right into the fatty tendon, continuing over it. A is a schematic; B is a dissection.

Fatty knee extensor tendon of an emu, showing the absence of a patella. The fatty tissue is split into superficial (Sup) and deep regions, with a pad corresponding to the fat pad in other birds continuous with it and the knee joint meniscus (cushioning pad). The triceps femoris (knee extensor) muscle group inserts right into the fatty tendon, continuing on over it. A is a schematic; B is a dissection.

Sectioning of a Southern Cassowary's knee extensor tendon, showing: A Similar section  as in the emu image above. revealing similar regions and fibrous tissue (arrow), with no patella, just fat; and B, with collagen fibre bundles (col), fat cells (a), and cartilage-like tissue (open arrows) labelled.

Sectioning of a Southern Cassowary’s knee extensor tendon, showing: A, Similar section as in the emu image above. revealing similar regions and fibrous tissue (arrow), with no patella, just fat; and B, With collagen fibre bundles (col), fat cells (a), and cartilage-like tissue (open arrows) labelled.

Evolution of patellar form in birds. White branches indicate no patella, blue is a small flake of bone for a patella, green is something bigger, yellow is a double-patella in ostriches, and grey is uncertain. Note the uncertainty and convergent evolution of the patella in ratite birds, which is remarkable but fits well with their likely convergent evolution of flightlessness and running adaptations.

Evolution of patellar form in birds. White branches indicate no patella, blue is a small flake of bone for a patella, green is something bigger, yellow is a double-patella in ostriches, black is a gigantic spar of bone in extinct Hesperornis and relatives, and grey is uncertain. Note the uncertainty and convergent evolution of the patella in ratite birds (Struthio down to Apteryx), which is remarkable but fits well with their likely convergent evolution of flightlessness and running adaptations.

3) Chadwick, K.P., Regnault, S., Allen, V., Hutchinson, J.R. 2014. Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint. PeerJ 2:e706 http://dx.doi.org/10.7717/peerj.706

Finally, Kyle Chadwick came from the USA to do a technician post and also part-time Masters degree with me on our sesamoid grant, and proved himself so apt at research that he published a paper just ~3 months into that work! Vivian Allen (now a postdoc on our sesamoid bone grant) joined us in this work, along with Sophie Regnault. We conceived of this paper as fulfilling a need to explain how the major tissues of the knee joint in ostriches, which surround the double-patella noted above, all relate to each other and especially to the patellae. We CT and MRI scanned several ostrich knees and Kyle made a 3D model of a representative subject’s anatomy, which agrees well with the scattered reports of ostrich knee/patellar morphology in the literature but clarifies the complex relationships of all the key organs for the first time.

This ostrich knee model also takes Kyle on an important first step in his Masters research, which is analyzing how this morphology would interact with the potential loads on the patellae. Sesamoid bones like the patella are famously responsive to mechanical loads, so by studying this interaction in ostrich knees, along with other studies of various species with and without patellae, we hope to use to understand why some species evolved patellae (some birds, mammals and lizards; multiple times) and why some never did (most other species, including amphibians, turtles, crocodiles and dinosaurs). And, excitingly for those of you paying attention, this paper includes links to STL format 3D graphics so you can print your own ostrich knees, and a 3D pdf so you can interactively inspect the anatomy yourself!

(A) X-ray of an ostrich knee in side view, and (B) labelled schematic of the same.

Ostrich knee in side view: A, X-ray, and (B) labelled schematic.

3D model of an ostrich knee, showing: A, view looking down onto the top of the tibia (shank), with the major collateral ligaments (CL), and B, view looking straight at the front of the knee joint, with major organs of interest near the patella, sans muscles.

3D model of an ostrich knee, showing: A, View looking down onto the top of the tibia (shank), with the major collateral ligaments (CL), and B, View looking straight at the front of the knee joint, with major organs of interest near the patella, sans muscles.

You can view all the peer review history of the papers if you want, and that prompts me to comment that, as usual at PeerJ (full disclosure: I’m an associate editor but that brings me £0 conflict of interest), the peer review quality was as rigorous at a typical specialist journal, and faster reviewing+editing+production than any other journal I’ve experienced. Publishing there truly is fun!

Merry Christmas and Happy Holidays — and good Ratite-tidings to all!

And stay tuned- the New Year will bring at least three more papers from us on this subject of ratite locomotion and musculoskeletal anatomy!

♬Should auld palaeognathans be forgot, 
And never brought for scans? 
Should publications be soon sought, 
For auld ratite fans!♪

How do I manage my team of 10+ researchers without losing my mind <ahem> or otherwise having things fall apart? I’m often asked this, as I was today (10 December; I ruminated before posting this as I worried it was too boring). Whether those undesirable things have truly not transpired is perhaps debatable, but I’m still here and so is my team and their funding, so I take that as a good sign overall. But I usually give a lame answer to that question of how I do it all, like “I have no secrets, I just do it.” Which is superficially true, but…

Today was that time of year at the RVC when I conduct appraisals of the performance and development of my research staff, which is a procedure I once found horridly awkward and overly bureaucratic. But now that it focuses more on being helpful by learning from past missteps and plotting future steps in a (ideally) realistic fashion than on box-ticking or intimidation, I find the appraisals useful. The appraisals are useful at least for documenting progress and ensuring that teammates continue to develop their careers, not just crank out data and papers. By dissecting the year’s events, one comes to understand what happened, and what needs to happen in the next year.

The whole process crystalizes my own thoughts, by the end of a day of ~1 hour chats, on things like where there needs to be different coordination of team members in the coming year, or where I need to give more guidance, or where potential problems might arise. It especially helps us to sort out a timeline for the year… which inevitably still seems to go pear-shaped due to unexpected challenges, but we adapt and I think I am getting better myself at guessing how long research steps might take (pick an initial date that seems reasonable, move it back, then move it further back, then keep an eye on it).

Anyway, today the appraisals reminded me that I don’t have a good story for how I manage my team other than by doing these appraisals, which as an annual event are far from sufficient management but have become necessary. And so here I am with a post that goes through my approaches. Maybe you will find it useful or it will stimulate discussion. There are myriad styles of management. I am outlining here what facets of my style I can think of. There are parallels between this post and my earlier one on “success”, but I’ve tried to eliminate overlap.

Stomach-Churning Rating: 0/10 but no photos, long-read, bullet points AND top 10 list. A different kind of gore.

Successfully managing a large (for my field) research team leaves one with fewer choices than in a smaller team– in the latter case, you can be almost anywhere on the spectrum of hands-off vs. hands-on management and things may still go fine (or not). In the case of a large (and interdisciplinary) team, there’s no possibility to be heavily hands-on, especially with so many external collaborations piled on top of it all. So a balance has to be struck somewhere. As a result, inevitably I am forced into a managerial role where, over the years, I’ve become less directly in touch with the core methods we use, in terms of many nitty-gritty details. I’ve had to adapt to being comfortable with (1) emphasizing a big picture view that keeps the concepts at the forefront, (2) taking the constraints (e.g. time, technology and methods, which I do still therefore have to keep tabs on) into account in planning, (3) cultivating a level of trust in each team member that they will do a good job (also see “loyalty” below), and (4) maintaining the right level of overall expertise within the group (including external collaborators) that enables us to get research done to our standard. To do these things, I’ve had to learn to do these other things, which happen to form a top 10 list but are in no order:

  1. Communicate regularly– I’m an obsessive, well-organized emailer, in particular. E-mail is how I manage most of my collaborations within and outside my team, and how I keep track of much of the details. (Indeed, collaborators that aren’t so consistent with email are difficult for me) We do regular weekly team meetings in which we go around the table and review what we’re up to, and I do in-person chats or G+/Skype sessions fairly frequently to keep the ball rolling and everyone in synch. I now keep a notebook, or “memory cane” as I call it, to document meetings and to-do lists. Old school, but it works for me whereas my mental notebook started not to at times.
  2. Treat each person individually- everyone responds best to different management styles, so within my range of capabilities I vary my approach from more to less hands-off, or gentler vs. firmer. If people can handle robust criticism, or even if they can’t but they need to hear it, I can modulate to deliver that, or try to avoid crushing them. While I have high expectations of myself and those I work with, I also know that I have to be flexible because everyone is different.
  3. Value loyalty AND autonomy– Loyalty and trust matter hugely to me as a manager/collaborator. I believe in paying people back (e.g. expending a lot of effort in helping them move their career forward) for their dedicated work on my team, but also keeping in mind that I may need to make “sacrifices” (e.g. give them time off for side-projects I’m not involved in) to help them develop their career. I seek to avoid the extremes: fawningly helpless yes-men (rare, actually) or ~100% selfish what’s-in-it-for-me’s (not as rare but uncommon). Any good outcome can benefit a research manager even if they’re not a part of it, but also on a big team it’s about more than what benefits the 1st author or the senior author, but everyone, which is a tricky balance to attain.
  4. Prioritize endlessly– for me this means trying to keep myself from being the rate-limiting step in research. And I try to say “no” to new priorities if they don’t seem right for me. Sometimes it means getting little things done first to clear my desk (and mind) for bigger tasks; sometimes it means focusing on big tasks to the exclusion of smaller ones. Often it depends on my whims and energy level, but I try to keep those from harming others’ research. I make prioritized to-do lists and revisit them regularly.
  5. Allow chaos and failure/imperfection– This is the hardest for me. My mind does not work like a stereotypical accountant’s- I like a bit of disorder, as my seemingly messy office attests to. Oddly within that disorder, I find order, as my brain is still usually good at keeping things organized. I do like a certain level of involvement in research, and I get nervous when I feel that sliding down toward “uninvolved”– loss of control in research can be scary. Some degree of detachment, stepping aside and allowing for time to pass and people to self-organize or come ask for help to avoid disaster (or celebrate success), is necessary, though, because I cannot be everywhere at once and nothing can be perfect. And of course, I myself fail sometimes, but with alertness comes recognition and learning. Furthermore, too much control is micromanagement, which hurts morale, and “disorder” allows the flexibility that can bring serendipitous results (or disaster). And speaking of disaster, one has to be mentally prepared for it, and able to take a deep breath and react in the right way when it comes. Which leads to…
  6. Think brutally clearly – Despite all the swirling chaos of a large research team and many other responsibilities of an academic and father and all that, I have taught myself a skill that I point to as a vital one. I can stop what I’m doing and focus very intensely on a problem when I need to. If it’s within my expertise to solve it, by clearing my head (past experience with kendo, yoga and karate has helped me to do this), I usually can do it if I enter this intensely logical, calm, objective quasi-zen-state. I set my emotions aside (especially if it is a stressful situation) and figure out what’s possible, what’s impossible, and what needs to be done, and find what I think is the best course of action quite quickly, then act on that decisively (but without dogmatic inflexibility). In such moments, I find myself thinking “What is the right thing to do here?” and I almost instinctively know when I can see that right thing. At that moment I get a charge of adrenaline to act upon it, which helps me to move on quickly. From little but hard decisions to major crises, this ability serves me very well in my whole life. I maintain a duality between that singleminded focus and juggling/anarchy, often able to quickly switch between those modes as I need to.
  7. Work hardest when I work best (e.g. good sleep and caffeination level, mornings)- and let myself slack off when I’m not in prime working condition. I shrug aside guilt if I am “slacking”– I can’t do everything and some things must fall by the wayside if I can’t realistically resolve them in whatever state of mind I’m in. The slacking helps me recharge and refresh– by playing a quick video game or checking social media or cranking up some classic Iron Maiden/modern Menzingers, I can return to my work with new gusto, or even inspiration, because…
  8. Spend a lot of time thinking while I “slack off”, in little bursts (e.g. while checking Twitter). I let my brain process things that are going on, let go of them when I’m not getting anywhere with them, and return to them later. This is harder than it sounds as I still stubbornly or anxiously get stuck on things if they are stressing me out or exciting me a lot. But I am progressively improving at this staccato-thinking skill.
  9. Points 7+8 relate to my view that there is no “work-life balance” for me—it is all my life, and there’s still a lot of time to enjoy the non-work parts, but it’s all a blend that lets me be who I am.
  10. Be human– try to avoid acting like a distant, emotionless robotic manager and cultivate more of a family-like team. Being labelled with the word “boss” can turn my stomach. “Mentor” and “collaborator” are more like what I aim for. Being open about my own flaws, failures, and life helps.

Long post, yeah! 1 hour on a train commute lets the thoughts flow. I hope that if you made it this far you found it interesting.

What do you do if you manage a team, what works for you or what stories do you have of research management? Celebrations and post-mortems are equally welcome.

It has been a long time since we had some Mystery Anatomy fun here, so I am cutting loose with a double-barrelled blast of images– dive for cover!

I’m also giving out a Crimbo present as a bigger post, on a special day coming soon, count on that. This is just an advent snack.

Stomach-Churning Rating: 2/10 and 7/10: digital body and glistening, snotty.

Mystery Anatomy 2014same rules as before; remember that the scoreboard has been reset.

Identify (1) the animal shown in the four-panel top images (CT scan/reconstruction), and (2) the DIFFERENT animal (and/or the main central, pink structure) shown in the big, gooey bottom image (Dissection). No special rules. Potential for double points!

And someone will get these, I am sure. This might be the final round of 2014’s Mystery Anatomy game.

Difficulty: Plenty.

Mystery CT 14

Mystery CT 14

Mystery Anatomy 15

Mystery Anatomy 15

Go forth!

I awoke on the floor in the aisle of my United Airlines flight to Los Angeles, with three unfamiliar men crouched around me, bearing serious expressions as they looked down on my prone body.

I was next to my seat. My daughter was crying inconsolably in her seat next to mine, and my wife was calling to me with an urgent tone from the next seat over.

Gradually, as my confusion faded and the men let go of me (I’d been cursing them out, in mangled words because I had bitten my tongue), I became aware that I was in intense pain, I could not move much, and my wife’s words became clearer:

I’d had a seizure. And so our relaxing family holiday, which had only just begun, ended. And so my waking nightmare began.

Stomach-Churning Rating: 5/10; lots of Anatomy Fail CT/x-ray images and gruesome descriptions, and a photo of some bruising.

I was helped back into my seat as I regained my senses, I noticed blood on me from my tongue, and I learned that we were 2 hours away from L.A. As I was acting more normal, and we were 5/6 of our journey along, there was no need to prematurely land the flight. I had fallen asleep while watching “22 Jump Street”, about 1.5 hrs in, and that’s when my seizure struck– much like the previous two seizures I’d had. Jonah Hill could be ruled out as a culprit, but going to sleep was an enabling factor. I got some over-the-counter painkillers and sat in a daze as time ticked by, we landed, and paramedics boarded the plane to whisk me off to the hospital with my family.

Two gruelling days and nights in a California hospital later, with my first night spent in a haze of clinical tests, begging for painkillers, yelling in pain every time I moved, and otherwise keeping my hospital roommate awake, the story became clearer: my seizure was so intense that I’d dislocated my right shoulder (unfortunately I’d not had much pain relief when the emergency room staff popped it back into my glenoid), probably dislocated my left shoulder too but then relocated it myself admist my thrashing, and done this (cue Anatomy Fail images):

Left shoulder, with the offending greater tubercle/tuberosity of the humerus showing fracture(s).

Left shoulder, with the offending greater tubercle/tuberosity of the humerus showing fracture(s).

Right shoulder x-ray, showing dislocation of the head of the humerus from the glenoid. Compare with above image- humerus has been shifted down. BUT no fractures, yay!

Right shoulder x-ray, showing dislocation of the head of the humerus from the glenoid. Compare with above image- humerus has been shifted down, the shoulder joint is facing you. BUT no fractures, yay!

CT scan axial slice showing my neck (on left), then scapula with fractured coracoid process ("bad") and displaced, fractured greater tubercle of humerus on right side.

CT scan axial slice showing my spine (on left), then scapula with fractured coracoid process (“Bad”) and displaced, fractured greater tubercle of humerus on right side (“V bad”).

So, that explains most of the pain I was in.

What’s amazing is that the fractures most likely occurred purely via my own uncontrolled muscle contractions. All the karate and weight-training I’d been doing certainly had made me stronger in my rotator cuff muscles, which attach to the greater tubercle of the humerus. And with inhibition of my motoneurons turned off during my seizure, and both agonist and antagonist muscles near-maximally turned on, rapid motions of my shoulders by my spasming muscles would have dislocated my shoulders and then wrenched apart some of the bony attachments of those same muscles. I’m glad I don’t remember this happening.

I had also complained of pain in my neck, so they did a CT scan and x-ray there too:

X-ray: No broken neck. This is good.

X-ray: No broken neck. This is good. Just muscle strain, which soon faded.

The left shoulder injuries created a hematoma, or mass of blood beneath my skin, and soon that surfaced and began draining down my arm (via the lymphatic system under gravity’s pull), creating fascinating patterns:

Bruises migrating; no pain associated with these, just superficial drainage of old blood.

Bruises migrating; no pain associated with these, just superficial drainage of old blood. This is tame, tame, tame compared to what my left ribcage looked like. I’ve spared you that.

But then more fundamentally there was the question of, why a seizure? With no clear warning? As I’ve explained before, I’d had a stroke ~12 yrs ago that caused a similar seizure but with no injuries to my postcranial body. So a series of MRI and CT scans ensued (the radiation I’ve had from the latter is good fodder for a superhero/villain origin tale? Marvel, I’ll await your call), and there was no clear damage or bleeding, and hence no stroke evident. Good news.

There are, however, at least two sizeable calcifications in my brain that are likely to be hardened scar tissue from my stroke. These may or may not have an identifiable affect on me or linkage with the seizure. Brain calcifications can happen for a variety of reasons, sometimes without clear ill effects.

Calcification in ?ventricle? of my cerebrum.

Calcification in parietal lobe of my cerebrum, from axial CT scan slice. But no bleeding (zone of altered density/contrast).

That is the state of the evidence. I’ve since had what semblance of a L.A. family holiday I could manage, benefitting from a touching surge of support from my family, friends and colleagues that has kept me from sinking entirely into despair and has brought quite a few smiles.

The plane flight home was tense. We were in the same seats again and one of the flight attendants recognized us and came to chat, eager to learn what had happened after we left the plane a week ago. He was very nice and the doctors had given me an “OK to fly” letter. But it was an evening flight. I needed to sleep, yet it was clear to me that sleep was no longer the fortress of regenerative sanctity that I was used to it being. Sleep had taken on a certain menace, because it was a state in which I’d now had three seizures. Warily, I drifted off to sleep after having some hearty chuckles at the ending to “22 Jump Street”. And while it was not very restful slumber, it was the friendly kind of slumber that held no convulsive violence within its embrace. We returned home safely.

In a rush, I cancelled my attendance at the Society of Vertebrate Paleontology conference this week, turning over the symposium I’d convened to honour one of my scientific heroes, biomechanist R. McNeill Alexander (who also could not attend due to ill health), to my co-convenors Eric Snively and Andreas Christian (by accounts I heard, all went well). I missed out on a lot of fun and the joy of watching 2 of my PhD students present posters on preliminary results of their research. Thanks to social media and email, however, I’ve been able to catch a lot of the highlights and excitement from that conference in Berlin.That has helped distract me somewhat from other goings-on.

Meanwhile, I’ve been resting, doing a minimal amount of catching up with work, having a lot of meetings with doctors to arrange treatment, and pondering my situation– a lot.

I know this much: I’ve had two violent seizures in a month (the previous one was milder but still bad, and not a story I need to tell here), and so I’m now an epileptic, technically. When and if I’ll have another seizure is totally uncertain, but to boost the odds in my favour I’m on anti-convulsant drugs for a long time now.

In about half of seizure cases, it’s never clear what caused the seizures. What caused my 2002 stroke is somewhat clear, but the mechanism behind that remains a mystery, and my other health problems likewise have a lot of question marks regarding their genesis and mutually causative relationships, if any. The outcome of this new development in my medical history is likely to be: “maybe your brain calcifications and scar tissue helped stimulate your new seizures, but we can’t be sure. The treatment is the same regardless: stay on anti-convulsants for a while, try going off them later, and see if seizures manifest themselves again or not.” Brains are freaking complicated; when they go haywire it can be perplexing why.

As a scientist, I thrill at finding uncertainty in my research topics because that always means there is work left to be done. But in my own life outside of science, stubborn, independent, strong-willed control freak that I can certainly be at times, I am not such a fan of uncertainty. In both cases the goal is to minimize that uncertainty by gathering more information, but in our lives we often encounter unscalable walls of uncertainty that persist because of lack of knowledge regarding a problem that vexes us, especially a medical problem. We then can feel in a helpless state, adrift on the horizon of science, waiting for explorers to push that horizon further and with it advance our treatment or at least our insight into ourselves.

When the subject of that uncertainty is not some detached, objective, unthreatening, exciting research topic but rather ourselves and our own future constitution and mortality, it thus becomes deeply personal and disconcerting. I’m grateful that I don’t have brain cancer or some other clear and present threat to my immediate vitality. Things could be a lot worse; I am here writing this blog after all. I’ll never forget now being in the ambulance and thinking “this may be the end of it all; I might not last much longer”, and choking out a farewell to my wife just in case things took a bad turn. I’m grateful for the amazing things that modern medicine and imaging techniques can do– these have saved my life so many times over, I cannot fathom how to quantify it. And I’m grateful for the people that have helped me through this so far. Fiercely independent as I may be, I can’t face everything alone.

I am reminded of words I read recently by Baruch Spinoza, “The highest activity a human being can attain is learning for understanding, because to understand is to be free.” To further paraphrase him, we love truth because it is knowledge that enables us to stay alive- without it, we are flying blind and soon will crash. With the freedom it brings, we know the landscape of our own life and where the frontiers of uncertainty lie (“here be dragons”).

here_be_dragons

The past two weeks have been horrendous for me. I’d been feeling healthy and stronger than ever in many ways, and my life as of my birthday a month ago felt pretty damn good. But now everything has come crashing down in disaster, and I have been suffering from the realization, once again, of how vulnerable I am and how little I can control, and the darkness that ushers in as the odds begin to stack up against our future lives. I am acutely aware now of where the “dragons” are.

I am taking one important step forward, though, in wresting life back onto the rails again- this week I undergo surgery to put my left shoulder back together. While that’s scary, to be sliced open and have my rotator cuff and bones carpentered back where they should be, I know I’m in good hands with a top UK shoulder surgeon and methods that are tried-and-true. The risks are small, although the recovery time will be long. There won’t be any hefting of big frozen elephant feet in my research soon, not for me, and so my enjoyable anatomy studies are going to have to change their track for coming months while I regain my strength and rely on others’ help.

(do you know the movie reference?)

(do you know the movie reference? I have a new empathy for Ash.)

Then we’re on to the frightening task of tackling the spasmodic-gorilla-in-the-room with neurologists. We’ll see where that journey leads.

One thing is certain: I’m still me and there’s still a lot of fight left in me, because I have a lot left to fight for, and people and knowledge to aid me in that fight. I can shoulder the burden of uncertainty in my life because I have all that. Off I go…

20 November UPDATE:

I’ve had surgery to put my greater tuberosity back where it belongs. Thanks to a skilled surgeon’s team, some sutures and nickel-titanium staples, I am back closer to my normal morphology and can begin recovering my (currently negligible) shoulder joint’s range of motion via some physiotherapy. Surgery went very well; I was just in hospital for ~30 hours; but the 9 days of recovery since have been brutally hard due to problems switching medications around. Today I got my stitches out and a beautiful x-ray showing plentiful healing; yay!

This is a slightly oblique anterior (front) view of my left shoulder/chest. Fracture callus means healing is working well!  Four surgical staples (bright white thingies on upper RH side of image): forever now a part of my anatomy.

This is a slightly oblique anterior (front) view of my left shoulder/chest. Fracture callus means healing is working well!
Four surgical staples (bright white thingies on upper RH side of image): forever now a part of my anatomy.

Title says it all? Sometimes a spade needs to be called a spade.

From time to time the Structure & Motion Lab at the RVC gets cool videos of animals doing different behaviours, be that slow-mo/high-speed videos, x-ray videos. motion capture or whatever. Actually, we get cool videos pretty much every day but some of them (such as a racehorse galloping on a treadmill) seem mundane to us, much as our visitors are impressed.

Here are some examples of the stuff we’ve filmed recently. It all seems to belong on this blog as an example of anatomy in motion, but has no good home here otherwise and no other cohesive threads uniting the disparate videos.

Hence the title. Enjoy!

The above two videos were made by Renate Weller, Emily Sparkes and others. Looping GIF of the last one, via Marko Bosscher:

X-Ray_Hamster

Shin-Ichi Fujiwara, myself and others made that video some years ago; research yet to be finished.

The above two high-speed videos were captured many moons ago with Alexis Wiktorowicz, Karin Jespers and others; more research yet to be finished.

Ashley Heers made this video for the “Fossil Wonderlands” documentary in 2013-14.

Check us out on BBC2 tonight in Cat Watch, with more videos!

 

Let's play find-the-spandrel!

Let’s play find-the-spandrel!

We just passed the 35th anniversary of the publication of Gould and Lewontin’s classic, highly cited, highly controversial essay (diatribe?), “The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.” The 21st of September 1979 was the fateful date. Every PhD student in biology should read it (you can find pdfs here— this post assumes some familiarity with it!) and wrestle with it and either love it or hate it- THERE CAN BE NO MIDDLE GROUND! With some 5405 citations according to Google Scholar, it has generated some discussion, to put it lightly. Evolutionary physiologists and behaviourists who were working at the time it came out have told me stories of how it sent (and continues to send) shockwaves through the community. Shockwaves of “oh crap I should have known better” and “Hell yeah man” and “F@$£ you Steve,” more or less.

I am among those who love “The Spandrels Paper“. I love it despite its many flaws that people have pointed out to seemingly no end- the inaccurate architectural spandrel analogy, the Gouldian discursive (overly parenthetical [I’m a recovering victim of reading too much Gould as an undergrad]) writing style, the perhaps excessive usage of “Look at some classic non-scientific literature I can quote”, the straw men and so on. I won’t belabour those; again your favourite literature search engine can be your guide through that dense bibliography of critiques. I love it because it is so daringly iconoclastic, and because I think it is still an accurate criticism of what a LOT of scientists who do research overlapping with evolutionary biology (that is, much of biology itself) do.

The aspects of The Spandrels Paper that I still think about the most are:

(1) scientists seldom test hypotheses of adaptation; they are quick to label something that is useful to an animal as an adaptation and then move on after rhapsodizing about how cool of an adaptation it is; and

(2) thus alternatives to adaptation, which might be very exciting topics to study in their own right, get less attention or none.

True for #2, evo-devo has flourished by raising the flag of constraint (genetic/developmental/other factors that prevent evolution from going in a certain direction, or even accelerate it in less random directions). That’s good, and there are other examples (genetic drift, we’ve heard about that sometimes), but option #1 still often tends to be the course researchers take. To some degree, labelling something as an adaptation is used as hype, to make it more exciting, I think, in plenty of instances.

Truth be told, much as Gould and Lewontin admitted in their 1979 paper and later ones, natural selection surely forges lineages that have loads of adaptations (even in the strictest sense of the word), and a lot of useful traits of organisms are thus indeed adaptations by any stripe. But the tendency seems to be to assume that this presumptive commonality of adaptations means that we are justified to quickly label traits as adaptations.

Or maybe some researchers just don’t care about rigorous tests of adaptation as they’re keen to do other things. Standards vary. What I wanted to raise in this post is how I tend to think about adaptation:

I think adaptations are totally cool products of evolution that we should be joyous to imagine, document, test and discover. But that means they should be Special. Precious. A cause for celebration, to carefully document by scientific criteria that something is an adaptation in the strictest sense, and not a plesiomorphy/exaptation (i.e. an adaptation at a different level in the evolutionary hierarchy; or an old one put to new uses), spandrel/byproduct, or other alternatives to adaptation-for-current-biological-role.

But that special-ness means testing a hypothesis of adaptation is hard. As many authors waving the flag of The Modern Comparative Method (TMCM) have contended, sciencing truth-to-adaptationist-power by the rules of TMCM takes a lot of work! George Lauder’s 1996 commentary in the great Adaptation book (pdf of the chapter here) outlined a lengthy procedure of  “The Argument from Design“; i.e., testing adaptation hypotheses. At its strictest implementation it could take a career (biomechanics experiments, field studies, fitness measurements, heritability studies, etc.) to test for one adaptation.

Who has time for all that?

The latter question seems maladaptive, placing cart and horse bass-ackwards. If one agrees that adaptations are Special, then one should be patient in testing them. Within the constraints of the practical, to some degree, and different fields would be forced to have different comfort levels of hypothesis testing (e.g. with fossils you can’t ever measure fitness or other components of adaptation directly; that does not mean that we cannot indirectly test for adaptations– with the vast time spans available, one would expect palaeo could do a very good job of it, actually!).

I find that, in my spheres of research, biomechanists in particular tend to be fast to call things they study adaptations, and plenty of palaeontologists do too. I feel like over-usage of the label “adaptation” cheapens the concept, making the discovery of one of the most revered and crucial concepts in all of evolutionary biology seem cheapened and trite. Things that are so easy to discover don’t seem as precious. When everything is awesome, nothing is…

I’ve always hesitated, thanks in part to The Spandrels Paper’s indoctrination, from calling features of animals adaptations, especially in my main research. I nominally do study major ?adaptations? such as terrestrial locomotion at giant body sizes, or the evolution of dinosaurian bipedalism. I searched through my ~80 serious scientific papers lately and found about 50 mentions of “adapt” in an adaptationist, evolutionary context. That’s not much considering how vital the concept is (or I think it is) to my research, but it’s still some mentions that slipped through, most of them cautiously considered– but plenty more times I very deliberately avoided using the term. So I’m no model of best practice, and perhaps I’m too wedded to semantics and pedantry on this issue, but I still find it interesting to think about, and I’ve gradually been headed in the direction of aspect #2 (above in bold) in my research, looking more and more for alternative hypotheses to adaptation that can be tested.

I like talking about The Spandrels Paper and I like some of the criticism of it- that’s healthy. It’s a fun paper to argue about and maybe we should move on, but I still come back to it and wonder how much of the resistance to its core points is truly scientific. I’m entering into teaching time, and I always teach my undergrads a few nuggets of The Spandrels Paper to get them thinking about what lies beyond adaptation in organismal design.

 What do other scientists think? What does adaptation mean (in terms of standards required to test it) to you? I’m curious how much personal/disciplinary standards vary. How much should they?

For the non-scientists, try this on for size: when our beloved Sir David Attenborough (or any science communicator) speaks in a nature documentary about how the otter is “perfectly adapted” to swim after prey underwater, do you buy into that or question it? Should you? (I get documentaries pushing me *all the time* to make statements like this, with a nudge and a wink when I resist) Aren’t scientists funny creatures anyway?

Follow

Get every new post delivered to your Inbox.

Join 2,610 other followers