Archive for the ‘Exalting Archosauria’ Category

In early 2011, I got a fun email from a producer at National Geographic TV about a new project they were planning, which involved dissecting a full-scale model of a Tyrannosaurus rex in a documentary to be called “T. rex Autopsy.” Things fell silent for some months, then I got another email saying they were moving forward, then things fell silent again. Three and a half years later I got another email, this time from a producer at Impossible Factual films (working with NatGeo), saying that the show was finally moving forward for real. (This sort of thing is normal for documentaries; time scales can be long and unpredictable, or very fast-paced) This email invited me to be a primary scientific consultant in the design of the creature and show. Of course, anatomical dissection and T. rex are what I’m about as a scientist; two of my major research areas; so bringing them together was like a dream come true and I leapt into that dream with enthusiasm.

(Meanwhile, circa 2010-11, another TV channel filmed me for a different programme in which a whole, fresh-ish T. rex was found weathering out of an Alaskan cliffside and scientists had ~2 days to study it before it fell into an abyss– it’s probably best that that show never happened… there were fundamental flaws.)

Stomach-Churning Rating: 0/10. Merciful. No images here, just text descriptions, for various reasons. The TV show is not for small children, though. I am guessing that the final programme will be about a 7/10 SCR because of gooey, seemingly rancid, but rubbery (so it doesn’t look overly real, but still looks great) dinosaur vital organs. For pictures, see the links to tweets, trailers and news stories below.

I introduced T. rex Autopsy to you in the previous post, I’ve been tweeting and retweeting extensively since then, and one of my later posts will be a “postmortem” of the show, which airs June 7 worldwide. My feeling is that, if what I’ve seen so far is indicative of the whole show, it will be a landmark moment in palaeontological documentary history. T. rex Autopsy fuses the best aspects of “Inside Nature’s Giants” with “Walking With Dinosaurs”, and without “Alien Autopsy” pseudoscience. Indeed, it seems to be a very science-based documentary (once you get past the requisite conceit that scientists could actually find a very fresh T. rex body– that’s the only sci-fi bit of the show, quickly dispensed with!). T. rex Autopsy is packed with evidence-based palaeobiology, and has consistently been so since I first spoke to producers, which was a great comfort to me.

This post is about my role in the show, my perspective on it, and an attempt at a spoiler-free prelude. I’m willing to go out on a limb a bit and urge people to watch it, because I’m already proud of what was attempted in the show– it was a bold vision by NatGeo and laborious execution by everyone involved. I especially want to give a big shout of respect out to creature designers Crawley Creatures (led by Jez Crawley, who helped create Jabba the Hutt and the Dark Crystal beings, among others). Around 14 people on Jez’s team worked full time for ~4 months to make the T. rex. The designers based the proportions on the Field Museum’s scans of “Sue”, which I helped them get access to (I’d used them for our PLOS ONE paper in 2011). That, and numerous comments on their draft dinosaur’s body proportions and limb positions (e.g. avoiding “bunny hands“), was some of my first major involvement in the programme.

Over 200 emails (I was curious; I counted them!) and a bunch of phone calls and 7 months later, my input on the T. rex Autopsy film shoot and production was finishing. Just last week, I sent what supposedly was my last email of input on the show, about predatory habits (NOT the dumb scavenger debate we’re all tired of; more about ambush vs. pursuit habits). I’d spent many hours going over drafts of T. rex‘s anatomy and function and behaviour from head to tail with the superb Impossible Factual film production team (mainly Assistant Producer Cressida Kinnear). Very often, to their credit, they’d already done a lot of literature searching and speaking with key experts on dinosaur jaws or brains or breathing, so I just had to check the fine details, but in some cases I had to recommend experts to speak to and/or do my own sleuthing and educate myself about aspects of T. rex biology I’d never pondered much.

For example, how big was T. rex‘s heart? I’d been asked the same question about sauropods lately for another show so I had references and an Excel spreadsheet ready to go, and plugged in some values, but the estimates I got seemed too small relative to the thoracic cavity (mediastinum if you must). I had some interesting back-and-forth discussions with the producers and we settled on one size that seemed “right”. No one that I knew of had tried to scientifically estimate the size of a T. rex‘s heart, probably because there hadn’t been a good reason to try. Sauropods get all the dino-love in regards to blood pressure issues and heart size, for good reasons- for them, it should have been a serious biomechanical challenge to pump blood up the long neck to the brain. For an elephant-sized T. rex, it doesn’t boggle the scientific mind so much that blood pressure wasn’t such a major evolutionary design constraint. See the show and find out more about what the intrepid team of dissectors found…

Did T. rex have feathers? This was important to get right, I felt, and not just show T. rex as a leathery or scaly beast, which is outdated. As I put it, it’s more speculative to show T. rex without any feathery thingies than to show it with some. We passed around draft images and thoughts and agreed on a slightly fuzzy, bristly body, especially in some regions of the head/neck, arms and tail tip. I encouraged the design team to go for more colour (I wrote to the designers “Skin colouring: go nuts! Feathery things should be colourful. Big animals tend to be more drab in colour but that doesn’t mean a boring grey/green, and certainly there should be some regional patterning. I like the idea of there being brightly coloured areas on the face”). We can be confident that dinosaurs could see colour like most land animals (except many mammals!) can. All of this is pretty familiar to palaeo-artists and fans of modern dinosaur reconstructions, so I won’t belabour it more. I’m glad that much of this made it into the final design. It’s not your overly familiar Jurassic Park T. rex.

Cheeks, eye pupils, brain/senses, how big a mouthful of meat it could swallow, furcula (wishbone), gastralia (belly ribs- I gave a lot of detailed criticism here), reproductive anatomy and biology, eggs, body fat, growth, air sacs, stomach, and excretory system, among other things: we covered them all in discussing the dino’s design, and I learned a lot along the way.

A memorable part of my discussions with the designers, in early March, was about the intestines and cloaca (rear-end opening): they initially put the cloaca too far forward on the body, I got them to move it backward, then I later realized in a panic that, making a neophyte error, I’d missed a key anatomical feature in the hips that clearly would put the “vent” even further backward, so I send them a hasty email apologizing that I’d missed this and urging that they fix their graphics and animations. I felt bad about this as it was late in the design phase and I’m sure I stressed out the team to make this change, but I thought it would be embarrassing to get the position of that hole wrong. Yet it was also funny to me to be scrutinizing where the “poop hole” of a dinosaur should go, and worrying so much about getting it right… my scatological sense of humour was in overdrive. By the middle of March they had this detail right. Phew!

There is another dinosaur that makes an appearance in the documentary but I don’t want to spoil it. Suffice it to say that one dinosaur from another time period and continent was initially chosen, and I (echoed by Dave Hone, I know) urged them not to do that, choosing a more appropriate Hell Creek Formation dinosaur. Phew! Perhaps more about that later.

Finally, of course we talked about legs and muscles and locomotion. I was filmed at the RVC discussing this, and it looks like it will be a cool segment, including an explanation of how the bones reveal the anatomy of the soft tissues of limbs and other parts of the body (i.e. bread-and-butter from my PhD thesis work). I hope that makes the final cut! (Edit: I’m told it has; yay!) There may even be footage of me dissecting a chicken and talking about enlarged and reduced leg muscles in birds, in any “making of” side-programme.

But I was not one of the four people doing the T. rex dissections in the show. That arduous job (2 looooooong days of filming!) fell to vet Luke Gamble and palaeontologists Tori Herridge, Steve Brusatte and Matthew Mossbrucker, with a crew of assistants including some from Crawley Creatures. The clever idea the producers had, as they explained it to me, was to keep my and others’ scientific input on the show’s design separate from the dissectors’ knowledge, so that when the dissection team arrived and cut into the dinosaur, they’d be discovering things without much advance inside knowledge of what to expect to find. We’ll see how that worked when the programme airs– I’ve only seen the trailer and behind-the-scences footage, as well as the first day of filming. Scientists like me aren’t Shakespearean actors so it’s hard to act surprised when you sort of know what’s coming and have to redo takes of that same surprise. But if you come to T. rex Autopsy expecting Oscar-worthy theatrics, you’ve missed the point. :-)

A taxi drove me to Pinewood Studios (west of London; site of filming many blockbusters) on a Sunday morning in late April. I walked into the giant studio where a 12+ meter long T. rex carcass lay in dramatic lighting. Cue the freezing of my giant grin in place and my eyes wide open. I was stunned! It was gorgeous, and the scale of the carcass left me gobsmacked. I’d only seen various incarnations of it during the design phase, from wire mesh scale models to clay sculptures to full-on foam casts and CGI representations; and all of these just as digital files emailed to me. But to see “Edwina,” as she was called, in the pseudo-flesh, was a moment I may never forget. Emailed JPGs definitely didn’t prepare me for that visual splendour. Crawley’s team were still inserting some of the last ~20,000 goose feathers as bristles into the hide, one by one…

I was at Pinewood to spend a day hobnobbing with VIPs and international press visitors as a “tour guide” to the Edwina autopsy event, and then for a day to watch the initial half of filming with the press in a room overlooking the studio. I got excellent hospitality, was called the “on-screen talent” in documents, which felt really weird to me (I’d never been called that in >10 shows before), and I spent a lot of time explaining the show and dinosaur science to that receptive, inquisitive audience. And gawking at the unfolding spectacle before and during filming. And cracking jokes with journalists during long breaks between actual filming of the documentary. It was a surreal, awesome experience and I loved it. (And, as I’ve insisted scientists in documentaries are, I got paid for it.)

This documentary was a blast to be involved in and challenged all my skills as a dinosaur expert and biologist as well as a fan of documentaries, monster movies and anatomical artistry! I give a big hat-tip to NatGeo for taking the plunge on this adventure in the first place, to the amazing creature creators, to the film and production crew, to the many jovial journalists I met, and to the four faux-bloodied, surely exhausted dissectors starring in the show– and to Edwina. This was an impressive collaboration drawing together the best that the media, monster-makers and an international team of scientists (aside from the ones I’ve mentioned already, many others too!) can do together. I feel lucky to have been involved, and I think I’ll be looking back on this event as a highlight of my career, especially as a science communicator; much like consulting on Inside Nature’s Giants is a highlight.

I’m as excited as anyone to see how it turns out. Just 2.5 weeks to go — are you excited too? What would you want to see in a T. rex dissection? Where would your first cut be if you did the dissection? “Jurassic World”, what’s that?

Read Full Post »

This week was a great week for me and giant dinosaurs in many ways, so I’m sharing that experience via photos and a bit of backstory. I hope you like it.

Stomach-Churning Rating: 1/10. Big birds and bones but no barfing.

First, I attended the filming of a new documentary, “T. rex Autopsy” (due for release on 7 June on NatGeo TV, just in time to steal the thunder of get you excited for Jurassic World), on the edge of London. I’m allowed to post these two photos of it. Expect much, much more information later– and I think you will like that information when it comes! Not quite a 50′ tall bird, but… So. Damn. Cool.



Second, my team and I dissected a big animal I’ve mentioned here before. For various reasons, I won’t/can’t post images or details of it right now, but I hope to soon. It’s not a dinosaur, but it was giant as its kind goes, so I’m wedging it in here.

Third, and this is the main impetus for my post, I finally got to see the giant chicken! No, not this one that I recall from my childhood…


But this one! A 50’/13m tall chicken made by teacher Ben Frimet’s team of students and teachers at the City of London Academy!

Shortly after my first encounter.

Shortly after my first encounter. I’m still in a state of awed shock. And shadow.

The megachicken was unveiled at a “Chickenfest” event celebrating the sculpture’s completion. Chickenfest also prominently involved members of the “Chicken Coop” team who have drawn together scientists, humanities scholars, artists and more to investigate “Cultural & Scientific Perceptions of Human-Chicken Interactions” — more details here. Their theme helped unite the event’s various displays and lectures as well as some of the City of London Academy’s teaching topics, which inspired students to look at chickens from many angles. The event was so fun and truly integrative that it had me clucking with joy, but the anatomically accurate giant chicken art piece stole the show (as intended). Enjoy the photo tour below.

Giant Chicken 5

Pelvic/thigh region! (no patella, but hey)

Giant Chicken 6

Great views from up to 3 storeys around it.

Giant Chicken 3 Giant Chicken 4 Giant Chicken 7 Giant Chicken 8 Giant Chicken 9

Little chickens made of fast-food forks and stuff.

Little chickens made of fast-food forks and stuff. Very clever.

Chicken bones

One of our research chickens, a 30-day-old broiler, skeletonized by the Chicken Coop team and brought to the event. Chunky and funky!

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira-Neves) presented a stall with motion capture and chicken bones, like this fun identification display.

Our RVC chicken research team (postdocs/fellows Drs. Heather Paxton, Jeffery Rankin, Diego Pereira Neves) presented a stall with motion capture demos and chicken bones, like this fun identification display.

What will happen to that giant chicken art piece? This is yet to be determined, and was the question asked of the lecture panel (including me, who gave a lame answer involving King’s Cross’s birdcage). It was unanimous that it must not be destroyed– as long as it does not go on a destructive rampage through London…

One of my favourite films of my teenage years, Beastmaster, lends me a phrase I’ll throw out here like a razor-edged boomerang-thing: “Life is a circle. We will meet again.” And so, at the Chickenfest event, past and present worlds collided. I happened to be there presenting a talk just before Luis Rey. Almost exactly 13 years ago, Luis had done this classic T. rex vs. giant chicken race for my “T. rex was not a fast runner” paper in Nature. He likewise has blogged about the Chickenfest event, so check that out!

T. rex vs. chicken race, by Luis Rey

Coincidentally, there was ANOTHER 50′ tall bird placed not far from that giant chicken in southeast London this week, for a very different reason- a huge Norwegian Blue parrot in celebration of the Monty Python reunion! And I’ve been a Monty Python fan since age ~11, so that rocks my world two times over.



Two giant birds in London in one week. It doesn’t get any better than that– unless there were three such birds– if I missed one, chime in in the Comments!

(Edit: British friends tell me I must refer to an Alan Partridge skit here, so I am doing so. I know when to do as I’m told.)

Read Full Post »

Deck the ‘Nets With PeerJ Papers— please sing along!

♬Deck the ‘nets with PeerJ papers,
Fa la la la la, la la la la.
‘Tis the day to show our labours,
Fa la la la la, la la la la.

Downloads free; CC-BY license,
Fa la la, la la la, la la la.
Read the extant ratite science,
Fa la la la la, la la la la.

See the emu legs before you
Fa la la la la, la la la la.
Muscles allometric’ly grew.
Fa la la la la, la la la la.

Follow the evolvin’ kneecaps
Fa la la la la, la la la la.
While we dish out ratite recaps 
Fa la la la la, la la la la.

Soon ostrich patellar printing
Fa la la la la, la la la la.
Hail anat’my, don’t be squinting
Fa la la la la, la la la la.

Dissections done all together
Fa la la la la, la la la la.
Heedless of the flying feathers,
Fa la la la la, la la la la♪

(alternate rockin’ instrumental version)

Stomach-Churning Rating: 5/10: cheesy songs vs. fatty chunks of tissue; there are no better Crimbo treats!

Today is a special day for palaeognath publications, principally pertaining to the plethora of published PeerJ papers (well, three of them anyway) released today, featuring my team’s research! An early Crimbo comes this year in the form of three related studies of hind limb anatomy, development, evolution and biomechanics in those flightless feathered freaks of evolutionary whimsy, the ratites! And since the papers are all published online in PeerJ (gold open access), they are free for anyone with internet access to download and use with due credit. These papers include some stunning images of morphology and histology, evolutionary diagrams, and a special treat to be revealed below. Here I’ll summarize the papers we have written together (with thanks to Leverhulme Trust funding!):

1) Lamas, L., Main, R.P., Hutchinson, J.R. 2014. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae). PeerJ 2:e716 http://dx.doi.org/10.7717/peerj.716 

My final year PhD student and “emu whisperer” Luis Lamas has published his first paper with co-supervisor Russ Main and I. Our paper beautifully illustrates the gross anatomy of the leg muscles of emus, and then uses exhaustive measurements (about 6524 of them, all done manually!) of muscle architecture (masses, lengths, etc.) to show how each of the 34 muscles and their tendons grew across a more than tenfold range of body mass (from 6 weeks to 18 months of age). We learned that these muscles get relatively, not just absolutely, larger as emus grow, and their force-generating ability increases almost as strongly, whereas their tendons tend to grow less quickly. As a result, baby emus have only about 22% of their body mass as leg muscles, vs. about 30% in adults. However, baby emus still are extremely athletic, more so than adults and perhaps even “overbuilt” in some ways.

This pattern of rapidly growing, enlarged leg muscles seems to be a general, ancestral pattern for living bird species, reflecting the precocial (more independent, less nest-bound), cursorial (long-legged, running-adapted) natural history and anatomy, considering other studies of ostriches, rheas, chickens and other species close to the root of the avian family tree. But because emus, like other ratites, invest more of their body mass into leg muscles, they can carry out this precocial growth strategy to a greater extreme than flying birds, trading flight prowess away for enhanced running ability. This paper adds another important dataset to the oft-neglected area of “ontogenetic scaling” of the musculoskeletal system, or how the locomotor apparatus adapts to size-/age-related functional/developmental demands as it grows. Luis did a huge amount of work for this paper, leading arduous dissections and analysis of a complex dataset.

Superficial layer of leg muscles in an emu, in right side view.

Superficial layer of leg muscles in an emu, in right side view. Click any image here to emu-biggen. The ILPO and IC are like human rectus femoris (“quads”); ILFB like our biceps femoris (“hams”); FL, GM and GL much like our fibularis longus and gastrocnemius (calf) muscles, but much much bigger! Or, perhaps FL stands for fa la la la la?

Data for an extra set of emus studied by coauthor Russ Main in the USA, which grew their muscles similarly to our UK group. The exponents (y-axis) show how much more strongly the muscles grown than isometry (maintaining the same relative size), which is the dotted line at 1.0.

Data for an extra set of emus studied by coauthor Russ Main in the USA, which grew their muscles similarly to our UK group. The exponents (y-axis) show how much more strongly the muscles grew than isometry (maintaining the same relative size), which is the dotted line at 1. The numbers above each data point are the # of individuals measured. Muscle names are partly above; the rest are in the paper. If you want to know them, we might have been separated at birth!

2) Regnault, S., Pitsillides, A.A., Hutchinson, J.R. 2014. Structure, ontogeny and evolution of the patellar tendon in emus (Dromaius novaehollandiae) and other palaeognath birds. PeerJ 2:e711 http://dx.doi.org/10.7717/peerj.711

My second year PhD student Sophie Regnault (guest-blogger here before with her rhino feet post) has released her first PhD paper, on the evolution of kneecaps (patellae) in birds, with a focus on the strangeness of the region that should contain the patella in emus. This is a great new collaboration combining her expertise in all aspects of the research with coauthor Prof. Andy Pitsillides‘s on tissue histology and mine on evolution and morphology. This work stems from my own research fellowship on the evolution of the patella in birds, but Sophie has taken it in a bold new direction. First, we realized that emus don’t have a patella– they just keep that region of the knee extensor (~human quadriceps muscle) tendon as a fatty, fibrous tissue throughout growth, showing no signs of forming a bony patella like other birds do. This still blows my mind! Why they do this, we can only speculate meekly about so far. Then, we surveyed other ratites and related birds to see just how unusual the condition in emus was. We discovered, by mapping the form of the patella across an avian family tree, that this fatty tendon seems to be a thing that some ratites (emus, cassowaries and probably the extinct giant moas) do, whereas ostriches go the opposite direction and develop a giant double-boned kneecap in each knee (see below), whereas some other relatives like tinamous and kiwis develop a more “normal”, simple flake-like bit of bone, which is likely the state that the most recent common ancestor of all living birds had.

There’s a lot in this paper for anatomists, biomechanists, palaeontologists, ornithologists, evo-devo folks and more… plenty of food for thought. The paper hearkens back to my 2002 study of the evolution of leg tendons in tetrapods on the lineage that led to birds. In that study I sort of punted on the question of how a patella evolved in birds, because I didn’t quite understand that wonderful little sesamoid bone. And now, 12 years later, we do understand it, at least within the deepest branches of living birds. What happened further up the tree, in later branches, remains a big open subject. It’s clear there were some remarkable changes, such as enormous patellae in diving birds (which the Cretaceous Hesperornis did to an extreme) or losses in other birds (e.g., by some accounts, puffins… I am skeptical)– but curiously, patellae that are not lost in some other birds that you might expect (e.g., the very non-leggy hummingbirds).

Fatty knee extensor tendon of emus, lacking a patella. The fatty tissue is split into superficial (Sup) and deep regions, with a pad corresponding to the fat pad in other birds continuous with it and the knee joint meniscus (cushioning pad). The triceps femoris (knee extensor) muscle group inserts right into the fatty tendon, continuing over it. A is a schematic; B is a dissection.

Fatty knee extensor tendon of an emu, showing the absence of a patella. The fatty tissue is split into superficial (Sup) and deep regions, with a pad corresponding to the fat pad in other birds continuous with it and the knee joint meniscus (cushioning pad). The triceps femoris (knee extensor) muscle group inserts right into the fatty tendon, continuing on over it. A is a schematic; B is a dissection.

Sectioning of a Southern Cassowary's knee extensor tendon, showing: A Similar section  as in the emu image above. revealing similar regions and fibrous tissue (arrow), with no patella, just fat; and B, with collagen fibre bundles (col), fat cells (a), and cartilage-like tissue (open arrows) labelled.

Sectioning of a Southern Cassowary’s knee extensor tendon, showing: A, Similar section as in the emu image above. revealing similar regions and fibrous tissue (arrow), with no patella, just fat; and B, With collagen fibre bundles (col), fat cells (a), and cartilage-like tissue (open arrows) labelled.

Evolution of patellar form in birds. White branches indicate no patella, blue is a small flake of bone for a patella, green is something bigger, yellow is a double-patella in ostriches, and grey is uncertain. Note the uncertainty and convergent evolution of the patella in ratite birds, which is remarkable but fits well with their likely convergent evolution of flightlessness and running adaptations.

Evolution of patellar form in birds. White branches indicate no patella, blue is a small flake of bone for a patella, green is something bigger, yellow is a double-patella in ostriches, black is a gigantic spar of bone in extinct Hesperornis and relatives, and grey is uncertain. Note the uncertainty and convergent evolution of the patella in ratite birds (Struthio down to Apteryx), which is remarkable but fits well with their likely convergent evolution of flightlessness and running adaptations.

3) Chadwick, K.P., Regnault, S., Allen, V., Hutchinson, J.R. 2014. Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint. PeerJ 2:e706 http://dx.doi.org/10.7717/peerj.706

Finally, Kyle Chadwick came from the USA to do a technician post and also part-time Masters degree with me on our sesamoid grant, and proved himself so apt at research that he published a paper just ~3 months into that work! Vivian Allen (now a postdoc on our sesamoid bone grant) joined us in this work, along with Sophie Regnault. We conceived of this paper as fulfilling a need to explain how the major tissues of the knee joint in ostriches, which surround the double-patella noted above, all relate to each other and especially to the patellae. We CT and MRI scanned several ostrich knees and Kyle made a 3D model of a representative subject’s anatomy, which agrees well with the scattered reports of ostrich knee/patellar morphology in the literature but clarifies the complex relationships of all the key organs for the first time.

This ostrich knee model also takes Kyle on an important first step in his Masters research, which is analyzing how this morphology would interact with the potential loads on the patellae. Sesamoid bones like the patella are famously responsive to mechanical loads, so by studying this interaction in ostrich knees, along with other studies of various species with and without patellae, we hope to use to understand why some species evolved patellae (some birds, mammals and lizards; multiple times) and why some never did (most other species, including amphibians, turtles, crocodiles and dinosaurs). And, excitingly for those of you paying attention, this paper includes links to STL format 3D graphics so you can print your own ostrich knees, and a 3D pdf so you can interactively inspect the anatomy yourself!

(A) X-ray of an ostrich knee in side view, and (B) labelled schematic of the same.

Ostrich knee in side view: A, X-ray, and (B) labelled schematic.

3D model of an ostrich knee, showing: A, view looking down onto the top of the tibia (shank), with the major collateral ligaments (CL), and B, view looking straight at the front of the knee joint, with major organs of interest near the patella, sans muscles.

3D model of an ostrich knee, showing: A, View looking down onto the top of the tibia (shank), with the major collateral ligaments (CL), and B, View looking straight at the front of the knee joint, with major organs of interest near the patella, sans muscles.

You can view all the peer review history of the papers if you want, and that prompts me to comment that, as usual at PeerJ (full disclosure: I’m an associate editor but that brings me £0 conflict of interest), the peer review quality was as rigorous at a typical specialist journal, and faster reviewing+editing+production than any other journal I’ve experienced. Publishing there truly is fun!

Merry Christmas and Happy Holidays — and good Ratite-tidings to all!

And stay tuned- the New Year will bring at least three more papers from us on this subject of ratite locomotion and musculoskeletal anatomy!

♬Should auld palaeognathans be forgot, 
And never brought for scans? 
Should publications be soon sought, 
For auld ratite fans!♪

Read Full Post »

It’s World Penguin Day! Watch your back though… these penguins aren’t as nice as they seem. But they need us to be nice to them!

Hahaha?Whether you watch a classic GIF like the one above, or a kid-friendly TV/film documentary, you might get the impression that penguins lead carefree, or at least silly or slapstick, lives– happy feet and all that. It works for Hollywood: a Charlie Chaplin comedy relief role to play.  And that’s the vision of penguins I grew up with: they were living cartoons to me.

But what’s the reality? Plenty of documentaries, most notably to my mind the recent Attenborough’s “Frozen Earth” episodes or “March of the Penguins” film, have dealt with the darker side to these two-toned, tuxedo-toting antipodeans. And anyone who has experienced penguins in the wild has probably seen those not-so-light facets of penguinity firsthand. On realiizing just how compulsively horny young “hooligan cock” male penguins were, Natural History Museum ornithologist Douglas Russell wrote: ““just the frozen head of the penguin, with self-adhesive white O’s for eye rings, propped upright on wire with a large rock for a body, was sufficient stimulus for males to copulate and deposit sperm on the rock.”

Stomach-Churning Rating: 5/10; some tears may be shed over cute baby penguins and you might choke if you’re a rhea trying to swallow one, but the anatomy shown is mostly skeletal or dessicated. No penguin juices. Except those just mentioned above.

I’m quick to admit, I didn’t know much about penguins until recently. I couldn’t name many species or say much about their behaviour, anatomy or evolutionary history. When I was a graduate student at Berkeley, I was enthused by a now-classic, elegantly simple study (published in 2000) that fellow PhD student Tim Griffin and biomechanist Dr. Rodger Kram conducted on penguin waddling. They found that the waddling gait of penguins isn’t mechanically disadvantageous, as it appears, but rather is a way that they conserve energy while walking. It’s the short legs, instead, that make their gait metabolically expensive, because shorter legs mean that more frequent, costly steps need to be taken, incurring high costs due to rapid firing of leg muscles to support the body. My vicarious enjoyment of Griffin’s & Kram’s research began my scientific introduction to penguins. Fast forward to 2014: I get a crash course in penguinology.

Punta Tombo (4)

Mostly-fledged Magellanic penguin

That’s what this post is about, and how it brought me in touch with The Existentialist Penguin— the haggard, storm-tossed, predator-harried, starved and bullied wanderer of wastelands.

My personal introduction to penguins over the past year has been initiated by a collaboration with PhD student James Proffitt and long-time colleague Dr. Julia Clarke, both at the University of Texas in Austin. They kindly invited me to collaborate on applying modern biomechanics to the surprisingly excellent fossil record of penguins (Sphenisciformes), among other extant water birds. Before diving into it all, I happened to go to Argentina.

Punta Tombo (2)

Penguin tries to keep cool in the shade, opening its mouth to shed heat in the autumn sun.

Just before I travelled to Patagonia on unrelated business (to study sauropodomorph dinosaurs!), I did a little googling and came across Punta Tombo reserve, near the city of Trelew that I was visiting (more about that in a future post!). It’s where some 1+ million Magellanic penguins (Spheniscus magellanicus) gather every southern summer to breed and fledge before making a long ~5 month swim up to Brazil. I asked my host, Dr. Alejandro Otero, if we might take a day off to visit this spot, where guanacos, rheas and other wildlife were also said to be common, and he basically said “Hell yes!” as he’d never been there. My Flickr photostream gives a big set of my favourite photos from that trip, but here are some others below, to show some of my experiences. We rented a car and took a lovely 90-minute drive south across the Patagonian plains, observing wildlife like tinamous (yes! So exciting for me) as we went. You could get within 1.5m of the penguins according to park rules, and the penguins were very permissive of that!

This jaunty chap was staying put in his burrow while people walked by. We came closer and he kept rotating his head around, staring at us. I first took it as cute juvenile behaviour, but on later observations of penguins realized it was a threat- "My beak is sharp! Stay back, bro, or I'll glock ya!"

This jaunty chap was staying put in his burrow while people walked by. We came closer and he kept rotating his head around, staring at us. I first took it as cute juvenile behaviour, but on later observations of penguins realized it was a threat- “My beak is sharp! Stay back, bro, or I’ll glock ya!”

The video below shows a penguin encounter that left me with no doubts that these animals don’t mess around. The smaller penguin escaped, losing its cool burrow and some of its tough hide, too. Indeed, penguins can be remarkable assholes to each other.

With battles like this erupting all around us, where the penguins struggled to find shade in the desert-like inland parts of the park, often hundreds of meters away from the cool ocean, it came as no surprise to find casualties. The juveniles (and some remaining adults; most having left by now while the ~1 year-old juveniles fledge) not only battled, but also fasted, and roasted in the heat as they shed their insulatory fluff for waterproofed streamlining. This poor little flat Spheniscus had been trodden a bit past streamlined:Punta Tombo (3)

Near the end of our visit, just after I saw an informative sign about the lesser rhea or “choique” (Pterocnemia/Rhea pennata), we managed to get very close to a rhea and follow it for a while, as penguins stood around in apparent disinterest. I’ll never forget that meeting: two flightless birds, yet adapted to such different lifestyles and habitats. The penguins were in the rhea’s domain; a hot, wind-blown, scree-scoured scrubland on the edge of the fertile ocean.rhea-penguin

The choique soon found a dry old hatchling penguin carcass, no meatier than the surrounding thickets, and tried to swallow it. The loss of teeth by its distant ornithurine ancestors proved to be a bad move, because it struggled to get the jerky-like mass through its beak:

That Punta Tombo visit was an experience I’ll never forget. I returned to the UK, abuzz with excitement about penguins. I “got” them now, I felt, at least in a very unscientific, anthropomorphic way. It took the face-to-beak experience to drive that home, more than any emotive film treatment could. Whether enduring Antarctic wintery blasts or unforgivingly hot and dry, burrow-speckled coastal badlands, penguins are buggers with true grit. Survivors, as their >60 million year fossil record attests to. On my return, I delved through my photos of museum specimens to get a better appreciation for penguin anatomy, preparing to also get familiar with that fossil record; all as part of that ongoing work with Proffitt and Clarke. Here’s some of that anatomy:

My first encounter with a penguin in the wild is probably this specimen washed up on a beach in Uruguay. I'm going with the tentative ID of a juvenile penguin skeleton; probably Magellanic.

My first encounter with a penguin in the wild (but not a live one) is probably this specimen washed up on a beach in Uruguay. I’m going with the tentative ID of a juvenile penguin skeleton (short foot; flat wing bones); probably Magellanic. The bevy of vertebrate morphologists investigating dead penguins on this beach during our conference in 2010 will not soon be forgotten!

Magellanic penguin skeleton, "flying" through the Punta Tombo visitor centre.

Magellanic penguin skeleton, “flying” through the Punta Tombo visitor centre.

University Museum of Zoology Cambridge skeleton of one of the "great penguin" (do not confuse with the great pumpkin!) species; either King (patagonicus) or Emperor (forsteri).

University Museum of Zoology Cambridge skeleton of a “great penguin” (do not confuse with the great pumpkin!) species of Aptenodytes; either King (patagonicus) or Emperor (forsteri). Characteristic features, in addition to the robust, dense skeleton, include the short neck, flattened but robust wings and scapulae, robust furcula (wishbone), stubby legs (with a big blocky patella) and thin but longish tail (supposedly used to balance with while walking/standing).

I’ll visit some more penguin anatomy in coming images- those photos are just teasers. And they set the stage for me to go back to my one-stop-shopping for awesome ornithological specimens, the Natural History Museum at Tring (images below presented with kind permission from the Natural History Museum, London; but I took the photos), to pick up an assortment of 11 frozen penguins from helpful curator Hein van Grouw! Such as this “gagged” King penguin:
NHMUK penguin

And this handsome Emperor penguin, going through the Equine Imaging Centre’s CT scanner as I do my usual routine of (1) get cool critters, (2) barrage them with radiation to peek inside:penguin CT (3)

CT scanner monitors as I scan a penguin; mid-torso x-ray slice shown on the right.

CT scanner monitors as I scan a penguin; mid-torso x-ray slice shown on the right.

Awwwwww... baby Gentoo penguin (Pygoscelis papua). Unhappy feet, I'm afraid.

Awwwwww… baby Gentoo penguin (Pygoscelis papua— EDIT: Probably Aptenodytes; see comments below). Unhappy feet, I’m afraid… Happy CT scanning, however– specimens like this are NOT easy to come by in these northern nether regions!

Because I love the CT scan images of these penguins so much (their skeletons are awesome and bizarre!), I’ll share the pilot scans of the best ones now:

Calling all penguin experts! What's up with this? Is that really how much gastrolith volume a penguin carries, or did a museum curator stick rocks up its bum? Seems very caudal in position. I'm fascinated.

Calling all penguin experts! What’s up with this? Is that really how much gastrolith (stomach stone; near bottom of image) volume a penguin carries (answer after some literature reading: maybe yes!), or did a museum curator stick rocks up its bum? It seems very caudal in position, and this is consistent with other animals I’ve seen (some below). A paper on this phenomenon and potential role in ballast is here. Another here.

Side view.

Side view. Nice view of the head at least.

The fluffy baby shown in the photo above. Nice pose, and lots of anatomy shown. And check it out- gastroliths?!? In such a young animal-- is it even feeding yet?

Young juvenile. Nice pose, and lots of anatomy is shown. And check it out- gastroliths?!? In such a young animal– is it even feeding yet? (presumably straight after hatching) And they are relatively big pebbles, too! If I noticed this 5 years ago, it would have been a nice paper to report- first recognition of gastroliths in penguin chicks seems to have been then. Indeed, that study observed some chicks intentionally swallowing stones.

Another youngun.

Another youngun; the fluffy one from the photo above. More rocks up its wazoo.

Three wee little chicks.

Three wee little chicks, all with stomach stones.

CT reconstruction of adult skeleton. This specimen was gutted and flattened, so the gastroliths are few and scattered. Check out the long tail:

From recent skeletons to fossil ones, penguins have wacky anatomy; they break most of the “rules” of being a proper bird, putting other oddballs like rheas to shame. I can’t ably review the many penguin species we know of, but the ancient Palaeocene penguin Waimanu features prominently in recent scientific discussions of penguin evolution, such as the superb research and blog of Dan Ksepka  as well as many workers in the southern hemisphere. I haven’t had a chance to inspect that creature’s bones, but while in Trelew, Argentina, I was very pleased to run into some excellent specimens of a later animal:

Part of the rather nice skeleton of Palaeospheniscus patagonicus, an Oligocene/Miocene largish penguin; from the MFN collections in Trelew, Argentina and collected nearby.

Part of the nice skeleton of Palaeospheniscus patagonicus, an Oligocene/Miocene largish penguin; from the MEF collections in Trelew, Argentina and collected nearby. The genus has been known since Ameghino’s description in 1891, and is closely related to living penguins, especially Aptenodytes. It was not a large penguin, but at about 5kg body mass was no slouch as birds go (roughly similar in size to a Magellanic penguin). I also got to see  Madrynornis mirandus, a Miocene form.

For me, the diagnostic trait of a penguin skeleton: the very short, tobust tarsometatarsus. From Palaeospheniscus, as above.

For me, the diagnostic trait of a penguin skeleton: the very short, tobust tarsometatarsus. From Palaeospheniscus, as above. The great palaeontologist GG Simpson wrote of it: “Despite the innumerable variations in details, the tarsometatarsi, on which all species but P. robustus are based, are quite stereotyped in general structure and leave little doubt that the forms placed here by Ameghino do all belong to a natural group.” A ratio of length to proximal width of >2 is typical of most penguins.  Synapomorphy FTW!

From beach skeletons, to mass suffering of landbound birds, to 3D imaging and fossil skeletons, I’ve had quite the immersion in penguinness lately. And through that experience, I’ve been drawn closer to penguins in more ways than one. I’ve been impressed by their adaptability and durability. In some ways, penguins’ adaptations to harsh freezing winters in wastelands also aid them to survive harsh baking summers in dry badlands.

Yes, those badlands are still coastal, and penguins can still drink the saltwater and excrete salt via their supraorbital glands, but those penguins in Punta Tombo were not having a keg party. They were clearly enduring some serious discomfort, and not all making it through the ordeal. I watched silently along with other penguins as one penguin lay prone in an awkward pose on a bleached-white stretch of hardpan soil, while one flipper meekly raised, then flopped down. It was not long for this world, and there was a host of large scavengers around ready to make the most of that, while penguin-eating giant petrels (a sister group to penguins) wheeled overhead.


Waddlers of the wastes

While penguins still spend most of their lives at sea, they retain a sometimes astonishing array of behaviours they use on land: burrowing, hopping/jumping, costly short-legged (but efficiently waddling) walking, and perhaps more that we haven’t yet discovered! Their unique anatomy reflects a compromise between all these factors, and we’re fortunate to have knowledge of their fossil record that shows a lot of detail on how they evolved it all. While penguins are a highly aquatic species, they show how aquatic and terrestrial adaptations can coexist in harmony; it’s not just a black-or-white issue. But with climate change in progress, the ~18 species of penguins have some rapidly altering challenges to adapt to, or go the way of Waimanu. This is a critical Kierkegaardian moment for The Existentialist Penguin.

I raise a glass in toast to that versatile, resilient, gravel-gizzarded Existentialist Penguin! May it persevere all the troubles our ever-changing world throws at it, as it has done since the Palaeocene. And may we draw inspiration from its tenacity, to face our own troubles, together on this crazy spinning globe!


by animalloz, on deviantart

Read Full Post »

(John: here’s a guest post from my former PhD student, soon to be 100% legit PhD, Dr., and all that jazz, Julia Molnar!)

This is my first guest post, but I have been avidly following what’s in John’s freezer (and the blog too) for quite a while. I joined the lab in 2009 and left a month ago on the bittersweet occasion of surviving my PhD viva (oral exam/defense), so I’d like to take a moment here to thank John and the Structure & Motion Lab for a great 4 years!

Moving on to freezer-related matters; specifically, a bunch of frozen crocodile spines. It was late 2011, and the reason for the spines in John’s freezer was that John, Stephanie Pierce, and I were trying to find out more about crocodile locomotion. This was anticipated to become my first major, first-author research publication (but see my Palaeontologia Electronica paper on a related subject), and I was about to find out that these things seldom go as planned; for example, the article would not be published for more than three years (the research took a long time!). Before telling the story of how it lurched and stumbled toward eventual publication, I’ll give you some background on the project.

Stomach-Churning Rating: 3/10; x-ray of dead bits and nothing much worse.

A stumbly sort-of-bounding crocodile. They can do better.

First of all, why crocodiles? For one thing, they’re large, semi-terrestrial animals, but they use more sprawling postures than typical mammals. Along with alligators and gharials, they are the only living representatives of Crocodylomorpha, a 200+ million year-old lineage that includes wolf-like terrestrial carnivores, fish-like giants with flippers and a tail fin, even armored armadillo-like burrowers. Finally, crocodiles are interesting in their own right because they use a wide variety of gaits, including bounding and galloping, which are otherwise known only in mammals.

Nile croc

Nile crocodile skeletal anatomy

OK, so why spines? Understanding how the vertebral column works is crucial to understanding locomotion and body support on land, and inter-vertebral joint stiffness (how much the joints of the backbone resist forces that would move them in certain directions) in particular has been linked to trunk movements in other animals. For this reason, vertebral morphology is often used to infer functional information about extinct animals, including dinosaurs. However, vertebral form-function relationships have seldom been experimentally tested, and tests on non-mammals are particularly scarce. So we thought the crocodile spines might be able to tell us more about the relationship between vertebral morphology, mechanics, and locomotion in a broader sample of vertebrate animals. If crocodile spine morphology could be used to predict joint stiffness, then morphological measurements of extinct crocodile relatives would have some more empirical heft to them. Several skeletal features seem to play roles such as levers to mechanically stiffen crocodile spines (click to emcroc’en):

Croc vertebra-01

Anatomy of a crocodile vertebra

We decided to use a very simple technique that could be replicated in any lab to measure passive stiffness in crocodile cadavers. We dissected out individual joints were and loaded with known weights. From the movement of the vertebrae and the distance from the joint, we calculated how much force takes to move the joint a certain number of degrees (i.e. stiffness).

Julia w vertebra (480x640)

Me with crocodile vertebra and G-clamp


X-ray of two crocodile vertebrae loaded with a metric weight to calculate their joint’s stiffness

Afterwards, we boiled the joints to remove the soft tissues – the smell was indescribable! We took 14 measurements from each vertebra. All of these measurements had been associated with stiffness or range of motion in other studies, so we thought they might be correlated with stiffness in crocodiles also.


Some of the vertebral measurements that were related to stiffness

Despite my efforts to keep it simple, the process of data collection and analysis was anything but. I recall and exchange with Stephanie Pierce that went something like this:

Stephanie: “How’s it going?”

Me: “Well, the data are messy, I’m not seeing the trends I expected, and everything’s taking twice as long as it was supposed to.”

Stephanie: “Yes, that sounds like science.”

That was the biggest lesson for me: going into the project, I had been unprepared for the amount of bumbling around and re-thinking of methods when the results were coming up implausible or surprising. In this case there were a couple of cool surprises: for one thing, crocodiles turn out to have a very different pattern of inter-vertebral joint stiffness than typical mammals: while mammals have stiff thoracic joints and mobile lumbar joints, crocodiles have stiffer lumbar joints. Many mammals use large lumbar movements during bounding and galloping, so crocodiles must use different axial mechanics than mammals, even during similar gaits. While that’s not shocking (they did evolve their galloping and bounding gaits, and associated anatomy, totally independently), it is neat that this result came out so clearly. Another unexpected result was that, although several of our vertebral measurements were correlated with stiffness, some of the best predictors of stiffness in mammals from previous studies were not correlated with stiffness in crocodiles. The study tells a cautionary tale about making assumptions about extinct animals using data from only a subset of their living relatives or intuitive ideas about form and function.

Finally, the experience of doing the experiments and writing the paper got me interested in other aspects of crocodilian functional anatomy. For instance, how does joint stiffness interact with other factors, such as muscle activity and properties of the ribs, skin, and armor in living crocodiles? Previous studies by Frey and Salisbury had commented on this, but the influence of those factors is less tractable to experiment on or model than just naked backbones with passively stiff joints. In the future, I’d like to study vertebral movements during locomotion in crocodiles – especially during bounding and galloping – to find out how these patterns of stiffness relate to movement. In the meantime, our study shows that, to a degree, crocodile backbone dimensions do give some clues about joint stiffness and locomotor function.

To find out more, read the paper! It was just featured in Inside JEB.

Julia Molnar, Stephanie Pierce, John Hutchinson (2014). An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). The Journal of Experimental Biology 217, 757-768 link here and journal’s “Inside JEB” story

Read Full Post »

And I post my blog and stare
Into x-rays of an ostrich
I’ve always known that radiographs never lie
People always say “that’s cool”
To see x-rays of an ostrich
So keen to know what
Lies behind the skin

(evolved from “Eyes of A Stranger” by Queensrÿche, from the epic masterpiece of Operation: Mindcrime (1988). One of my favourite albums of all time, and a fantastic concept album too. The band was operating at their peak. Tight! Drug addict Nikki gets brainwashed by the evil Dr. X and made to assassinate a nun, Sister Mary, who was a prostitute, and then there’s like a revolution or something, and things get all screwed up and no one ends up happy – or alive. All the while, Geoff Tate is singing his guts out. Anyway, I got to see them play the whole album live in 1990 in Madison, WI, for the filming of Operation: Livecrime, which was like a Mecca moment for me back then. Look for me (pre-bald years) in about the 6th row. )

What does that album have to do with the number 2 (two days left in Freezermas)? Hmm… Track 2 is the instrumental Anarchy-X, and today’s post is about X-rays as well as that funky ostrich (2 legs good! 2 toes good, too!) again, so I’m satisfied, and by this point you’re probably just oggling the mind-blowing images below anyway, so fuck it!

Stomach-Churning Rating: 2/10; just X-rays.

Tech/MRes Kyle Chadwick, Renate Weller and the equine imaging team at the RVC took these x-rays of our birdie for us and for an artist who is doing a big x-ray animal art show (more news on this soon!)– thanks to all of them for some truly awesome images! I could stare at the intricate details in these images for hours– go ahead, do it. Click to emostrichinate them (this post needs to be viewed on nice big screen), and oggle away…

Head and neck.

Head and neck.

Another view of the same.

Another view of the same. The highly flexible esophagus and trachea can be seen going diagonally across the neck; twisting from ventral to dorsal. It’s floppy, so it can do that.

Neck near the head; tapering.

Neck near the head; tapering.

Middle of neck. Check out the rings of the trachea!

Middle of neck. Check out the rings of the trachea!

Base of neck and shoulder

Base of neck and shoulder.

Shoulder and chest. Hard to image; thick and dense (still was frozen).

Shoulder and chest. Hard to image; thick and dense (still was frozen), hence the whiteout toward the left side of the image.

Check out that wing!!

Check out that wing!!

Ankle- note the big calloused pad that ostriches rest on (right side of image).

Ankle- note the big calloused pad that ostriches rest on (right side of image).

That two-toed foot... but did you know that normally the missing 2nd toe is still there as a fibrous remnant on the 3rd toe?

That two-toed foot… but did you know that normally the missing 2nd toe is still there as a fibrous remnant on the 3rd toe?

Tomorrow: the final day of Freezermas. What will it be?

Read Full Post »

Freezermas continues! Today we have a treat for you. Lots of detailed anatomy! This post comes from my team’s dissections of an ostrich last week (~3-7 February 2014), which I’ve been tweeting about as part of a larger project called the Open Ostrich.

However, before I go further, it’s as important as ever to note this:

Stomach-Churning Rating: 9/10: bloody pictures of a dissection of a large ostrich follow. Head to toes, it gets messy. Just be glad it wasn’t rotten; I was glad. Not Safe For Lunch!

If the introductory picture below gets the butterflies a-fluttering in your tummy, turn back now! It gets messier. There are tamer pics in my earlier Naked Ostriches post (still, a rating of 6/10 or so for stomach-churning-ness there).

All photo credits  (used with permission) on this post go to palaeoartist Bob Nicholls (please check out his website!), who got to attend and get hands-on experience in extant dinosaur anatomy with my team and Writtle College lecturer Nieky VanVeggel (more from Nieky soon)!

Research Fellow Jeff Rankin, myself and technician/MRes student Kyle Chadwick get to work.

Research Fellow Jeff Rankin, myself and technician/MRes student Kyle Chadwick get to work, removing a wing.

This is a male ostrich, 71.3 kg in body mass, that had gone lame in one foot last summer and, for welfare reasons, we had to put down for a local farmer, then we got the body to study. We took advantage of a bad situation; the animal was better off being humanely put down.

The number for today is 6; six posts left in Freezermas. But I had no idea I’d have a hard time finding a song involving 6, from a concept album. Yet 6 three times over is Slayer’s numerus operandi, and so… The concept album for today is Slayer’s  1986 thematic opus “Reign in Blood” (a pivotal album for speed/death metal). The most appropriate track here is the plodding, pounding, brooding, then savagely furious “Postmortem“, which leads (literally and figuratively, in thunderous fashion) to the madness of the title track, after Tom Araya barks the final verse:

“The waves of blood are rushing near, pounding at the walls of lies

Turning off my sanity, reaching back into my mind

Non-rising body from the grave showing new reality

What I am, what I want, I’m only after death”

I’m not going to try to reword those morbid lyrics into something humorous and fitting the ostrich theme of this post. I’ll stick with a serious tone for now. I like to take these opportunities to provoke thought about the duality of a situation like this. It’s grim stuff; dark and bloody and saturated with our own inner fears of mortality and our disgust at what normally is politely concealed behind the integumentary system’s viscoelastic walls of keratin and collagen.

But it’s also profoundly beautiful stuff– anatomy, even in a gory state like this, has a mesmerizing impact: how intricately the varied parts fit together with each other and with their roles in their environment, or even the richness of hues and multifarous patterns that pervade the dissected form, or the surprising variations within an individual that tell you stories about its life, health or growth. Every dissection is a new journey for an anatomist.

OK I’ve given you enough time to gird yourself; into the Open Ostrich we go! The remainder is a photo-blog exploration of ostrich gross anatomy, from our detailed postmortem.


Read Full Post »

Older Posts »


Get every new post delivered to your Inbox.

Join 2,187 other followers